How to Simulate
a Ponytail

by Chris

Hecker

o il ; cake OR LoeREDltay /1y 0 (R Ty ¢
DEa RS T o5l id Ofitinstate imnlate: o hawl or rake ol e
Wi 10 Bavepet@te on The diedregse, [ollg o '

he truth is, it’s hard to use

physics in games. | found this

out the hard way, and | think a lot

of other developers are finding the same

thing as they try to integrate dynamics

into their projects. It’s not that the

physics simulation technology

itself is terribly difficult — you

can either read a bunch of

books and implement it

yourself, or license one

of the many physics

simulators on the

market these

days.

The hard part is inte-

grating dynamics with game playin a

meaningful way.

Always one to avoid the hard parts when pos-

sible, I’'m going to present a slightly different

kind of physics article this time around. Let’s

completely dodge the integration of physics

and game play, and simply use physics to

dynamically generate some cool effects that

would be tedious or difficult for an animator to

create by hand. This isn’t a cop out or a totally

superfluous goal, mind you. Not only are special

effects important to games as we all know, but

by easing physics into the development process

Chris Hecker (checker@d6.com) can’t come up with a funny
saying for his bio because he’s been highly constrained by
the deadline.

through relatively low-risk special
effects, you can get comfortable with
the math and implementation in a
real, shipping game. The experience
gained through incremental adoption
will be very valuable when you’re
deciding whether to add physics to any
of the core game-play elements in your
game, and possibly risking the project
in the process. To this end, we’re going
to simulate a character’s hair tied in a
ponytail.

The Ponytail
N 0 one would argue that the pony-
tail is the most important physi-
cal feature of today’s game heroines
(ahem), but ponytails have a lot of
characteristics that make them com-
pelling candidates for simulation. First
and foremost — given our focus on
low-risk special effects in this article —
ponytails are relatively important to
the look of a character, but they don’t
affect the game play. Rarely are video-
games won or lost based on the move-
ment of a ponytail. Second, the pony-
tail’s movement is almost always pas-
sively dynamic, depending only on
external forces like gravity and the
character’s movement. Games don’t
often need the ponytail to move in a
specific way, it just has to look like a
ponytail. This is the best kind of ani-
mation to simulate, because not only is
it the easiest (as opposed to simulating
something with active controlled
dynamics, such as a creature’s
walking motion), but it’s also
the most tedious to hand-ani-
mate. If we can write a short
piece of code to dynamically
generate the ponytail
motion given any possible
movement of the character
and the forces acting on
her, then our animator
can go work on some-
thing more important.
We get a ponytail
that always reacts
correctly, rather
than having only a
few canned pony-
tail animations.
Finally, the
math behind
the ponytail
simulation

A

L ot | ik | i | e =

FIGURE 1. A screenshot from the

sample application showing a pony-
tail swinging from the back of a head.

we’ll derive is applicable to any other
dynamic chain, and this category
includes all sorts of other objects you
see in games, such as ropes and chains
hanging from ceilings, swords in scab-
bards on characters’ belts, and the like.

There are myriad ways to simulate a
ponytail, both in the sense that there
are a large number of physical models
for a ponytail and a large number of
ways to simulate each model. Picking
an appropriate model for your system
that captures the dynamics you’re
interested in but doesn’t make the sim-
ulation too complicated is an impor-
tant first step. One obvious model for a
ponytail would be to simulate every
strand of hair and actually tie the simu-
lated strands together into a conven-
tional ponytail. This is probably over-
kill for the kind of movement we’d like
to capture, not to mention that a high-
ly accurately simulated ponytail like
this would probably come undone in
the middle of some Egyptian crypt,
which is the last thing you want to
have happen while adventuring. My
own ponytail comes undone while I'm
typing articles, let alone while battling
lions and tigers and bears...anyway,
you get the picture.

We’'re going to model our ponytail as
a series of rigid bodies constrained
together with joints. Our joints allow
the bodies to rotate relative to each
other, but not to translate relative to
each other. Thus, the ponytail can flop
around, but it can’t stretch or slide
apart. See Figure 1 for a screenshot of
the sample application showing the
ponytail. Each segment of the ponytail
will be a rigid body, and each body will
be attached to its two neighbors. The
first and last links are exceptions. The
last link is attached to the rest of the

ponytail above it, but it doesn’t have a
neighbor below it, so it’s the end of the
chain and it dangles freely.

The first link is attached to its neigh-
bor below it on the ponytail, and to
the head. The ponytail bodies move
dynamically due to the simulation,
assuming we do our job correctly, but
the head is a different matter.

Kinematic and Dynamic Control

We definitely don’t want the head
to move dynamically, since
that opens the can of game play worms
we’re trying to avoid by simulating
something “trivial,” like a ponytail.
The artist should have complete con-
trol over the head’s movement, and
that animation should be played back
by the game exactly as if there were no
simulated ponytail. So, how do we con-
nect the dynamically simulated pony-
tail to the traditionally animated head?
The exact mathematics for this connec-
tion will have to wait until later in the
derivation, but the concept is impor-
tant to discuss early on.

As you’ll remember from my series
on rigid body dynamics in Game
Developer (Oct./Nov. 1996-Feb./Mar.
1997 and June 1997), the quantities we
use during simulation break down into
kinematic quantities and dynamic
quantities (the articles are available on
my web site or on the 1999 Game
Developer back issues CD-ROM,; see the
end of this article for details). The kine-
matic quantities, such as position,
velocity, and acceleration, describe the
movement of the object, but don’t
specify why these quantities might
change. The dynamic quantities,
including force and mass, describe why
and how the kinematic quantities are
changing.

This is true for a dynamically simu-
lated rigid body, but what about the
character’s head? It has animations
generated by an artist in a tool such as
Maya, or out of procedural animation
code, not from our dynamic simula-
tion. This kind of body is “kinematical-
ly controlled,” as opposed to the
dynamically controlled bodies that
we’ve simulated before. It is kinemati-
cally controlled because there are pre-
scribed functions for the body’s kine-
matic quantities, whether simple
interpolated keyframes for the posi-

http://www.gdmag.com

tion, or something more elaborate.
Mixing kinematically controlled bodies
with dynamically controlled and simu-
lated bodies is an important part of
incrementally adopting physics for
things such as special effects. We need
our dynamically simulated bodies to
react to the kinematically controlled
bodies, but not vice versa — we always
want to respect the artist’s kinematic
animations and leave them in control.

Our constrained rigid body model
for the ponytail is obviously a simplifi-
cation, but it is detailed enough to cap-
ture most of the important dynamics
of the ponytail’s movement. It’s not
modeling the flexibility of the hair
except at the joints, but then again,
most of the animators doing ponytails
aren’t doing more than linked seg-
ments anyway. Our model closely
matches the bones-based animation
models that most animation tools are
using today.

Lagrange Multipliers

N ow that we’ve chosen our basic
physical model, we need to
choose a solution method. There are a
number of different techniques for
simulating constrained rigid bodies,
and we don’t have room to discuss
them even briefly here. I've chosen a
popular method that’s relatively intu-
itive and easy to implement. Perhaps
most importantly, it has a mathemati-
cal derivation that fits in a magazine
article or two.

The technique we’re going to use is
called Lagrange Multipliers. The basic
idea behind this method is first to cal-
culate the external forces and torques
on the constrained rigid bodies, com-
pletely ignoring the constraints. Then
we calculate the forces of constraint
that keep the joints together given
these external forces trying to pull the
joints apart. So, in Figure 2, if Body B is
pulled up by some force, we’ll calculate
a joint force that will pull up Body A
and the constraint will stay satisfied.

The tricky part is how to calculate
that joint force. Calculating this force
is tricky because it depends on the
dynamics of the objects. Obviously, if
Body B and Body A are both traveling
at the exact same velocity in the same
direction, then the joint won’t need to
exert any force to stay together. Simil-

GAME DEVELOPER MARCH 2000

.-_'_r'

TABLE 1. Kinematic and dynamic equations for a 3D rigid body.

KINEMATIC EQUATIONS. R is the position of the center of mass, ris some radius vector to a point p fixed

in the object.

p=R+r
p=R+wxr

P=R+0Xr+wxwxr

Eq.1

Eq.2

Eq.3

DyYNAMIC EQUATIONS. Equations 4 and 5 are f=ma for a 3D body. Equations 6 and 7 describe how a

force at p affects the center of mass.

f =mR

T=la+wxL

arly, the joint shouldn’t counteract any
rotational movement, so if Body A is
rotating around the joint but the posi-
tion of the joint is not moving, there
should be no joint force as well. Only if
the joint threatens to translate apart
will the algorithm compute and apply
a nonzero force.

The derivation in this article is going
to follow the derivation | gave in my
lecture of the same name at the recent
Game Developers Conference
RoadTrips. As | did for that lecture, I'm
going to have to assume you've either
read my physics articles or their equiv-
alents from other sources. We’re going
to start manipulating the dynamics
equations straightaway, so go review
now if you need to by using the refer-
ences at the end of this article. I've
placed the basic kinematic and dynam-
ic equations for a 3D rigid body in
Table 1 for quick reference.

The Derivation

e’ll do most of our derivation

work using only two bodies
with a single constraint between them.
This will help us get comfortable with
the math and detect the structure with-
in it without needing to mess with lots
of bodies and constraints from the
beginning. Let’s start by outlining the
steps in the derivation:

1. Figure out notation and
conventions.

Eq. 4
Eq.5
Eq.6

Eq.7

2. Write dynamics equations with
unknown constraint force.

3. Write constraint equation in terms
of body accelerations.

4. Plug ‘n’ chug to get constraint
equation with unknown con-
straint force.

5. Numerically solve for constraint
force.

Step 1 is incredibly important. If you
don’t have your conventions worked
out before you start, you’ll quickly get
lost in a sea of conflicting symbols. Our
notations and conventions are illus-
trated in Figure 2. I've labeled the bod-
ies A and B, and all objects fixed on the
bodies are subscripted appropriately.
So, p, is the tip of A’s constraint vector,
computed by adding body A’s center of
mass position, R,, to A’s joint vector,
r,- Our goal is to enforce the constraint
that p, is equal to p, in world space at
all times. That is, the bodies can move
around the world and rotate and what-
not, but the ends of their joint vectors
had better match up or that means the
joint came apart and we screwed up.

We’re going to use f. to denote the
constraint force vector that’s applied at
the joint to keep it together. This is the
vector we're trying to calculate.
Although both bodies on either side of
the joint feel a constraint force, there’s
only one constraint force per joint
because of Newton’s third law. This law
states that for every action there’s an
equal and opposite reaction, or put in
plain terms, whenever the joint pulls

http://www.gdmag.com

on Body A, it pulls on Body B in exact-
ly the opposite direction. If Body A
feels the joint pulling it up, then Body
B feels the joint pulling it down. This
means we only need to calculate a sin-
gle vector for each constraint, and then
we can apply it positively to one of the
bodies and negatively to the other. By
convention, we will apply the con-
straint force positively to Body A.

The constraint force vector is a 3D
vector, as is every other force in our
dynamic system, including springs, drag
forces, friction, and so on. At the end of
all our equation manipulation, we’re
going to end up with a matrix equation
that looks like Af,=b, where Aisa
three-by-three matrix, and f, and b are
three-vectors. A and b will be known to
us (they’ll be composed of various
known vectors in the system at the
given time, like the positions and veloc-
ities of the objects). We will need to cal-
culate f, from this linear system of equa-
tions. We’ll talk more about solving this
system when we come to it, but while
we’re in the thick of things, remember
our goal, Af, = b. Keeping our eyes on
the prize will help us stay sane and
guide us in our manipulations when
we’re awash in equations.

The Dynamics Equations

Let's quickly write down the linear
and rotational dynamics equations
for Body A:

fc+FEA =MARA Eq.8

ry xf, +1, = 1,0, +w, XL, Eq. 9
I've separated out the forces and
torques into those caused by f, and
those caused by the external stimuli.
The latter are labeled with a subscript E
for “external.” External forces are basi-
cally “everything else,” such as springs,
friction, drag, forces from explosions,
weapon recoil, wind blowing, and
every other force and torque that
affects the bodies in the system. These
should all be known at the current
instant. If we weren’t going to simulate
the constraint, we’d just plug in the
external forces and all the other known
terms (the masses, inertia tensors,
angular velocity and momentum, and
so on) and integrate forward, just like
when we were simulating discrete rigid
bodies. However, the unknown f; keeps

GAME DEVELOPER MARCH 2000

Body A

FIGURE 2. Asimple system with two
bodies and one constraint between
them.

us from integrating yet, because we
need to know all the forces on the
objects to find the accelerations.

We can take Equations 8 and 9 and
solve them for the linear and angular
acceleration terms:

R, =M. + MR, Eq. 10

A = I/_xl(rA xf:) + I;1TEA - l;\l(wA x LA)

Eq. 11
In Equations 8 and 10 I'm treating the
rigid body mass, M, as a matrix rather
than as the usual scalar. This is totally
acceptable, as long as | make this mass
matrix mathematically equivalent to
the scalar. It’s easy to create such a
matrix by multiplying the identity
matrix by the mass.

Equations 10 and 11 for Body B are
almost identical. Obviously we need to
change the little A subscripts to little B
subscripts. Besides that, the only real
difference is that the constraint force is
applied negatively to Body B, so wherev-
er f, appears in the equations for Body
A, —f. will appear in those for Body B.

The Constraint Equation

ow we have four vector equations

for the accelerations of the bod-
ies: Equations 10 and 11 and their
equivalents for Body B. If we knew the
force of constraint a priori, we could

| camesPLanPES ol Pl I ol P o B S

plug it in here with the other known
values and then compute the new
accelerations of the objects and step
forward in time. Since we don’t know f,
yet, we need another equation to play
around with. The constraint equation
should do nicely.

You should notice that we haven’t
really talked mathematically about the
constraint yet. We’ve said we’re going
to enforce a constraint, but how is that
expressed in symbols? It’s relatively
simple. Just write an equation that
describes the desired situation. | pro-
pose this:

PP =0 Eq. 12
Or, written out in terms of the individ-
ual body components:

Ry+r,—Ry—-1, =0 Eq. 13

Equation 12 (and 13) states that the
vector to the endpoints of the con-
straints on the two bodies have to be
equal. If Body A’s constraint endpoint
moves to the left, then Body B’s had
better follow or Equation 12 will be
violated. If we can enforce Equation 12
at all times, we’ve constrained the bod-
ies together.

It’s not at all clear how to keep Equa-
tion 12 satisfied using our force, f,
though. Forces can’t directly affect
positions, so we need to put Equation
12 into a form where our f, can act
upon it. The secret is to differentiate
the equation twice. This will give us a
constraint equation in terms of acceler-
ations, which we know from f = ma are
directly influenced by forces. More
specifically, differentiating Equation 12
will give us a constraint equation in
terms of the bodies’ accelerations,
which are directly influenced by f; via
Equations 10 and 11.

Differentiating Equation 12 isn’t just
a symbolic trick to make it work with
forces, it actually makes intuitive sense
as well. Since Equation 12 says the
positions of the two points must coin-
cide, its first derivative says their veloc-
ity vectors must be equal as well. This
is symbolically obvious from simply
taking the derivative:

pA - pB =0
But, it’s also physically obvious when
you think about it. If the joint end-
point velocities were not equal at some

point in time, then an instant later
their positions would have to be

http://www.gdmag.com

unequal as well, since differing veloci-
ties means the points were going in dif-
ferent directions. Does this mean we
need to enforce the velocity constraint
as well as the positional constraint?
No. If the objects begin the simulation
with the position constraint satisfied,
then as long as we satisfy the velocity
constraint every timestep, the position
equation will be satisfied automatical-
ly. How could it not be? It’s satisfied at
time = 0, and then we enforce the
velocities to be the same at all times, so
the positions can never diverge. (For
extra credit, think about how this phe-
nomenon is related to the somewhat
mysterious constant that always
appeared when integrating equations
in high school calculus.)

This argument makes sense for accel-
eration as well. If the position and
velocity constraints were met at some
time in the past, and we’ve forced the
accelerations of the points to be equal
at all times since then, the positions
must still be equal because the veloci-
ties must have always been equal.
Again, we can write out the second
derivative of the constraint equation

and see this symbolically:

P.—P; =0 Eq. 14
Now that we’ve arrived at the accelera-
tion version of the constraint equation,
how do we use f; to enforce it?

For starters, Equation 14 is a pretty
compact and abstract way of describing
the relationship between the two joint
endpoint accelerations. We can drill
down and enlarge it considerably by
substituting in the definition of the
points’ accelerations in terms of their
center of mass and angular accelera-
tions from Equation 3. If we substitute
in Equation 3 for both p, and p, into
Equation 14, we get a much more
detailed description of what’s going
on, and we also get a big huge mess of
terms.

Homework

u nfortunately, it’s a mess of terms
that you’re going to have to battle
with yourself until next month,
because I’'m out of space. | will drop a
few hints for the adventurous. The

i

main idea is to take the big mess we
just made, and make it even bigger by
substituting in Equations 10 and 11
and their equivalents for Body B into
the body acceleration terms. This will
give us one huge equation that we can
eventually get into our goal form,

Af. = b. Still, you might go insane
manipulating all of those terms, so if
you’re going to try it, | recommend
only dealing with one of the joint end-
points and seeing where you can get
with that first.

Next month we’ll finish up the
derivation for two bodies with one
constraint, and talk about extending
the math to arbitrary numbers of bod-
ies and constraints.

FOR FURTHER JNEFO
My Dynamics Page

http://www.dé6.com/users/checker/
dynamics.htm

The 1999 Game Developer Back Issues
CD-ROM

http://www.gdmag.com

	back:

