
Attention:

This material is copyright 1995-1997 Chris Hecker. All rights
reserved.

You have permission to read this article for your own education. You
do not have permission to put it on your website (but you may link
to my main page, below), or to put it in a book, or hand it out to your
class or your company, etc. If you have any questions about using
this article, send me email. If you got this article from a web page
that was not mine, please let me know about it.

Thank you, and I hope you enjoy the article,

Chris Hecker
definition six, incorporated
checker@d6.com
http://www.d6.com/users/checker

PS. The email address at the end of the article is incorrect. Please
use checker@d6.com for any correspondence.

B E H I N D T H E S C R E E N
Physics, Part 3:
Collision Response
Once a collision has

occured between

objects, careful

modeling of the

physics involved can

impart realistic

velocities and rotations

to the objects.

Chris Hecker
A
sk anyone who’s experienced
it before, and they’ll tell you
not to get in a car with me
when I’m driving. For some
reason, cars and I just don’t
get along very well. Or maybe
I should say the front end of
my car gets along very well

indeed with the rear ends — and various
additional parts — of other cars.

My driving skills notwithstanding,
the topic for today is not how to avoid
collisions (a topic about which I’m
clearly not qualified to write), but rather
“collision response” — what to do once
we already know there is a collision.

You can probably guess that in the
context of our series on game physics,
the term “collision response” doesn’t
refer to calling an ambulance (in con-
trast with the context of my daily com-
mute). The term refers to the second
half of the collision process in a physical
simulator, the first half of which is
“collision detection.” While in the real
world, the sound of smashing glass is all
the collision detection we need, the
same is not true of our simulator, where
we need code to explicitly check our
geometry for collisions. Collision detec-
tion itself is worth a series of columns.
Still, it’s much more a geometric prob-
lem than a physical one, so for this col-
umn, we’re going to assume you already
have a way to detect collisions (we
might return to the collision detection
problem in a later column). The physics
simulator requires certain information
from the collision detector; we’ll
identify this information as we develop
the collision response formulas and
summarize the requirements at the end
of the column.
http://www.gdmag.com
Once we’ve detected a collision, the
fun physics math starts, as we try to
decide which directions the objects
move in response to the impact. While
we’re going to restrict our scope to colli-
sions between rigid bodies (so we won’t
be able to model all the crumpling and
buckling that goes on when I run into
an unsuspecting motorist), we’ll still do
better than you’ve probably seen before.
Most current games do simple vector
reflections, or maybe even take the
objects’ masses into account. However,
in keeping with our goal for this series,
we’re going to do more accurate (and
interesting) collision response. Our
objects will spin and tumble as they col-
lide, with heavy objects tossing lighter
objects aside, imparting rotation to each
other when they hit off-center. So,
insurance premiums be damned: Full
speed ahead!

Impulsive Behavior
To begin understanding the collision
process, let’s imagine we have two
objects, labelled A and B, that are about
to collide at a point P. Coincidentally,
Figure 1 shows these very objects.
There’s actually a point P on both objects,
so I’ve labeled the vector from the center
of mass of object A to its point P as rAP,
and likewise with rBP for B. Let’s also
denote the velocities of the Ps as vAP

and vBP. A moment’s thought convinces
us that even though the Ps will be in the
same exact position at the instant of col-
lision (or there wouldn’t be a collision at
P), their velocities at that instant can be
quite different — if one object is
stationary, for example. Given the veloc-
ities of the Ps, we can define their rela-
tive velocity as vAB.
GAME DEVELOPER • MARCH 1997 11

B E H I N D T H E S C R E E N

 Ob

n

(Eq. 1)
More importantly, if our collision

detector supplies us with a “normal vec-
tor” for the collision (denoted by n, and
pointing toward body A by convention),
we can define the “relative normal
velocity” as the component of the rela-
tive velocity in the direction of the colli-
sion normal.

(Eq. 2)

Choosing a normal vector can be
tricky, as we’ll discuss below. But in the
case of a vertex/edge collision — as in
Figure 1 — it’s pretty obvious that the
normal should be perpendicular to the
edge. Eq. 2 allows us to define the crite-
rion for a collision:

A collision occurs when a point
on one body touches a point on
another body with a negative
relative normal velocity.
This statement says Eq. 2 must be

negative at the contact point or there’s no
collision. Consider the following three
cases: If Eq. 2 is greater than 0, then the
points are leaving each other, and we can
ignore them. If it’s equal to 0, the points
are neither colliding nor separating — a
situation called contact — and we’ll have
to deal with that problem in a future col-
umn. Finally, if Eq. 2 is less than 0, then
the points are smashing into each other,
and we need to do something to stop
them from penetrating. That something
is the collision response.

The obvious thing to do for colli-
sion response is to apply a force to both
objects, but that doesn’t actually do the
job for rigid bodies. A force won’t stop
the bodies from interpenetrating because
a force can’t instantaneously change a
velocity. That is, a force takes time to
change a velocity — it can only do so via
integration over time, as we learned in
previous columns. Yet our objects are
already touching, so we don’t have any
extra time to allow the force to do its
work and counteract the negative relative
normal velocity. We must change their
velocities immediately or our objects will
move inside each other. How can we
affect this discontinous velocity change?

v n v v nAB AP BP ⋅ = −() ⋅

v v vAB AP BP= −
12 GAME DEVELOPER • MARCH 1997
Think about the physics we’ve
learned so far. Nowhere did velocities,
either linear or angular, change instantly.
Both are changed only by forces and
torques through integration, which by
definition means the velocity changes are
continuous. In the case of a rigid body
collision, however, we must change the
velocities instantaneously. That calls for
a new quantity: the “impulse.”

We shouldn’t feel bad about intro-
ducing yet another quantity at this point.
After all, it was our idealization of inpen-
etrable rigid bodies that got us into this
discontinuous velocity mess in the first
place; it should come as no surprise that
we have to idealize a little more to get
ourselves out of it.

In a real-world collision, a lot of
complicated atomic things happen that
we can’t hope to simulate directly. Thus,
in the same way that we’re approximat-
ing real-world objects with rigid bodies,
we need to approximate the real-world
collision process with an idealized model.
Impulses are part of this model.

An impulse can change velocities
directly, without waiting — the way a
force must — for integration to do it.
You can think of an impulse as a really
huge force integrated over a really short
period of time. The force is so large and
the amount of time so small that we’re
no longer dealing with an almost infi-
nite force over an infinitesimal period of
time, but with a perfectly finite impulse.
And, as force changes the momentum
over time (remember F=), our impulse
changes the momentum
instantaneously, which in
turn changes our velocity
(by the definition of
momentum as mass
times velocity). We can
calculate and apply im-
pulses at the point and
instant of collision, and
these impulses will
change the bodies’ veloci-
ties and prevent them
from interpenetrating.

But how do we cal-
culate the impulses to
apply? This is the central
problem of collision

 ṗ

Figure 1.

B

http://www.gdmag.com
response. There are many ways to calcu-
late the impulse’s magnitude and direc-
tion, depending on how realistic you
want to be. In the interest of space,
we’re going to go with a relatively sim-
ple model, but one that will still give us
the interesting angular collision behav-
ior we want. Later in the series, when
we’re more comfortable with the mathe-
matics, we might try a more complex
approximation.

The collision model we’ll use is
called “Newton’s Law of Restitution for
Instantaneous Collisions with No Fric-
tion.” The easiest part of this model to
understand is the “instantaneous” part.
The model assumes the collision process
takes no time. Since “no time” is a very
small amount of time, all of our regular
noncollision forces go away during the
collision, and only the collision impulses
are calculated. Thus, noncollision forces
such as gravity are not taken into
account during the collision, although
they’re in effect as usual before and after
the collision.

Newton’s Law of Restitution intro-
duces yet another new quantity, the
“coefficient of restitution” (usually
denoted by an e or an ε, lowercase
epsilon). The coefficient of restitution
models the complicated compression and
restitution of impacting bodies with a
single scalar, which relates the contact
point’s incoming and outgoing relative
normal velocities.

(Eq. 3)v n v n2 1
AB AB ⋅ = − ⋅e

jects A and B colliding.

rBP

rAP

A

P

Eq. 3 uses a subscripted 1 and 2 to indicate the incoming
and outgoing velocities, respectively. The coefficient of restitu-
tion e is a scalar that tells us how much of the incoming energy
is dissipated during the collision. It can range from a totally
elastic collision at e=1 (a superball), to a totally plastic collision
at e=0 (a lump of clay landing on the floor).

Our collision model makes the final simplifying assump-
tion that there is no friction at the point of collision. Thus, the
impulse generated by the collision is entirely in the normal
direction n (there’s no tangential impulse at all). We can express
the impulse with a single scalar j times the normal, giving us jn.
Newton’s Third Law of equal and opposite forces says that the
impulse felt by A is jn, while the impulse felt by B is simply –jn,
the equal and opposite impulse. Now we’re ready to derive the
collision response equations.

Hit Me
For starters, we’ll derive the collision response equations for
objects that cannot rotate, then we’ll go all the way and calcu-
late the angular impact equations, as well. This is going to get a
bit hairy, so you should probably get a piece of paper. The first
equations we write relate the incoming and outgoing Center of
Mass (CM) velocities under the influence of the (currently
unknown) impulse.

(Eq. 4a)

(Eq. 4b)

I was able to write Eqs. 4a and 4b by keeping in mind that
the impulse is a change in momentum, and I divided through by
each object’s mass to convert from a momentum equation to one
in terms of velocity. Since the objects can’t rotate yet, the veloci-
ties of the CMs (vA and vB) are the velocities of all the points on
the respective bodies; we can replace vAP with vA in Eq. 1 and
make a similar exchange for B. Next, we use Eq. 3 to relate the
incoming and outgoing relative velocities with the coefficient of
restitution, and substitute in Eq. 1 for the definition of relative
velocity. Substituting in Eqs. 4a and 4b and distributing the dot
product, we get

(Eq. 5)
We can simplify Eq. 5 by noting that the v terms on the

left-hand side make up the relative normal velocity from Eq. 2
(modified by our assumption that the object can’t rotate). We
then solve for the scalar j and find (notice all the terms on the
right-hand side are known at the time of collision)

(Eq. 6)

Now that we know the impulse magnitude, we can plug it
back into Eqs. 4a and 4b to find the new linear velocities of our
objects. The collision is resolved!

Let’s note a few things about Eqs. 4 and 6. First, you should
notice that n doesn’t have to be a unit-length vector for the colli-
sion response equations to work; the various dot products will
cancel out any nonunit magnitude for n without forcing you to
explicitly normalize it (thus avoiding normalization’s accompany-
ing square root). Of course, if you know n is unit length, you can
avoid some multiplies in the denominator of Eq. 6.

The second thing to notice is that these same equations can
handle a moving rigid body colliding with another rigid body that
is supposed to stay fixed, such as a building or the ground. To see
this, look at what happens when the mass of one of the objects
increases: the effect of the impulse on that object decreases. Take
this to the limit of infinite mass, and all the mass reciprocals for
that object go to 0. Eq. 6 no longer contains the object’s mass, and
it degenerates into the equation for collision with a fixed object.
Actually, the infinitely massive object doesn’t have to be fixed, as
its velocity is still present in Eq. 6. If it is moving, however, it will
brush aside any dynamically simulated object and not feel so much
as a nudge (such an object is called kinematically driven, since it’s
ignoring the dynamic quantities of mass, force, and impulse).

Finally, if you set A’s mass to 1, set B’s mass to infinity and
its velocity to 0, make the coefficient of restitution 1, and make
n unit length, you might recognize the equation to reflect a vec-
tor (vA) about a normal.

Spin Out
Now that we’re warmed up, we can derive the complete 2D col-
lision response equations, including the terms for angular veloci-
ty. To do this, we’ll need to use the equation we learned in the
last column for calculating the velocity of an arbitrary point on a
rotating and translating rigid body.

(Eq. 7)
I’ve written Eq. 7 for the postcollision velocities using the

subscript 2, but it holds for the precollision velocities as well if
you replace the 2s with 1s.

Next, in the same way we wrote Eqs. 4a and 4b for the
change in linear velocity under the influence of an impulse, we
can write equations for the changes in both linear and angular
velocities when the impulse is applied. Here, I’ve written the
equations for body A:

(Eq. 8a)

(Eq. 8b)ω ω2 1
A A

AP

A

I
= + ⋅⊥r nj

v v n2 1
A A

A= +
j

M

v v r2 2 2
AP A A AP= + ⊥ω

j
e

M M

=
− +() ⋅

⋅ +

1

1 1

1v n

n n

AB

A B

v v n v v n

v n n n v n n n v n

2 2 1 1

1 1 1

A B A B

A
A

B
B

AB

−() ⋅ = − −() ⋅

⋅ + ⋅ − ⋅ + ⋅ = − ⋅

e

j

M

j

M
e

v v n2
B B

B
 = −1

j

M

v v n2
A A

A = +1
j

M

B E H I N D T H E S C R E E N

14 GAME DEVELOPER • MARCH 1997 http://www.gdmag.com

B E H I N D T H E S C R E E N

it
ap
th
ex
in
ap
I’
co

w
bo
im
j,
B

vi
ni
T
ti
th
lis
in

(d
ti
co
ba

A
N
ho
th
d
ch
be
to

ti
st
ra
ri
in
ef
of
ro
vi

si
si
di
co
ob
in

re
ti
ly

ta
of

th
ti
th
E
ea

ba
si
ex
co
de
th
sh

se
dl
ho
th
ed
sp
is
ju
si
re
m
ar
ge
co
re
A
re
fl
st

ar
Eq. 8a should be familiar from our linear collision example;
 matches Eq. 4a. Eq. 8b, on the other hand, is the result of
plying the impulse jn at point P on body A. The last term on
e right translates the linear impulse into an angular impulse in
actly the same way that we translated linear force into torque
 the last column: using a perp-dot product to the point of
plication. Since impulse will change the angular momentum,

ve divided through by the moment of inertia at the CM to
nvert Eq. 8b into an equation in the angular velocities.

Eqs. 8a and 8b together show how the collision impulse
ill affect body A’s precollision velocities. The equations for
dy B are exactly the same when j is replaced by –j, since the
pulse is equal and opposite. Our remaining task is to solve for

and then plug it into Eqs. 8a and 8b (and the counterparts for
) to resolve the collision.

Solving for j involves the same sort of algebra as in the pre-
ous example. First, start with Eq. 3, replace vAB with the defi-
tion in Eq. 1, and substitute Eq. 7 for vAP and its twin for vBP.
hen, for the unknown postcollision linear and angular veloci-
es, substitute in Eqs. 8a and 8b and their B versions. Gather
e terms, being sure to recognize the expression for the precol-
ion relative normal velocity (in the same way we brought it
to the numerator in Eq. 6), and solve for j. We end up with

(Eq. 9)
Once we’ve calculated j, we plug it into Eqs. 8a and 8b

on’t forget to negate j and plug it into the equivalent equa-
ons for B), and we’re done with the collision response. The
lliding bodies go flying apart, complete with the correct spin
sed on their incoming velocities and masses.

 Little Touch Up
ow that you know the collision response equations, let’s see
w they fit into our overall simulation loop. Listing 1 shows
e pseudocode for the simulation loop that supports collision

etection and response from the sample application. I
anged last issue’s step-by-step algorithm to pseudocode
cause the loop got a bit more complex when it was extended
 handle collisions.

The root of this new complexity is calculating the “exact”
me of collision. Notice we integrate forward by a full time
ep at first, and if there’s interpenetration at the new configu-
tion, we subdivide the time interval and try again. The algo-

j
e

M M

=
− +() ⋅

⋅ +

+

⋅()
+

⋅()⊥ ⊥

1

1 1

1

2 2

v n

n n
r n r n

AB

A B

AP

A

BP

B

I

I

no
th
pi
sa
te
un
thm amounts to doing a binary search of the time step look-
g for the time of collision. This is not necessarily the most
ficient way to find the collision time, since we throw away all
 our previous integration work, but it’s very simple and
bust. Other solutions to this problem include using the pre-
ous integration parameters to help estimate when the colli-
16 GAME DEVELOPER • MARCH 1997 http://www.gdm
on occured, trying to predict ahead of time where the colli-
on will occur, or even trying to use the interpenetrating coor-
nates and hoping it doesn’t look too bad. Also, this discrete
llision routine doesn’t catch “tunneling,” where fast moving
jects can move completely through other objects in a single
tegration step.

Once a noninterpenetrating configuration is found, we
solve the collision — if present — and update the configura-
on. Then we loop back up to complete the time step and final-
 draw the objects.

I’ve glossed over a few things in this presentation, so let’s
ke the remaining space to get out the Bond-O and fill in some
 the holes….

It should be clear from the collision response equations
at we need to know four pieces of data about a collision: the

me of the collision, the objects participating in the collision,
e colliding points on those objects, and the collision normal.
ach of these parameters has some subtleties, and we’ll go into
ch in turn.

You’ll notice I quoted the word “exact” a few paragraphs
ck when refering to the first required piece of data: the colli-

on time. The reason is that there’s really no such thing as the
act collision time when you’re working numerically on a
mputer. We’re forced to use a tolerance value for collision
tection, within which we agree to say we’re colliding (rather
an interpenetrating or not touching). The sample code
ows this technique.

The next bit of data — the collection of colliding objects —
ems obvious, but note that our current algorithm can only han-
e a single collision between two bodies. A similar limitation
lds for the third parameter, the collision points. It’s easy to see
at in a 2D collision between convex polygons, you can get an
ge/edge collision, which means the collision “manifold” — the
ace that represents the parts of the objects that are touching —
 no longer a point, but a line segment. You can get away with
st using the vertices of the line segment for this kind of colli-
on, but even that is beyond the powers of our current collision
sponse routine. It can only handle a single collision point, not
ultiple simultaneous collision points. Simultaneous collisions
e much harder and will have to wait for another time. Things
t even worse in 3D, where you can get point, edge, and face
llisions with convex polyhedrons, and collision detection and
sponse become a nightmare when you get into curved surfaces.
nyway, the sample application’s collision detector currently
turns only a single collision point, and although we don’t get
at-edged bounces (it always looks like one point hits first), it
ill looks pretty good.

The collision normal is the final place where ambiguities
ise. In 2D, on an edge/edge or a vertex/edge collision, the
rmal vector is easily obtainable as a vector perpendicular to
e edge. However, on a vertex/vertex collision, you need to
ck a sensible vector to use for the collision normal. The
mple application avoids this problem by treating vertex/ver-
x collisions as vertex/edge collisions, but that can lead to
realistic behavior.
ag.com

The references for this material
would just about fill the space of an
entire column, so once again, I ’m
going to put them on my website at
http://ourworld.compuserve.com/homepages/
checker. The derivations I’ve used here are
similar to David Baraff’s equations in his
SIGGRAPH tutorial on physically based
modeling (it’s in my references). Like
most results in math and physics, there
are a bunch of ways of getting to the
same equations, including derivations
based on the laws of conservation of
energy and momentum, and derivations
based on things called “generalized coor-
dinates.” If you study this stuff seriously,
you’ll want to work out the equations in a
lot of different ways to make sure you
understand them. The more practice you
get, the better mathematician and physi-
cist you’ll become. Now, if only the same
principle held for my driving… ■

Chris Hecker’s collision response is
usually to write a large check to some auto-
body shop. Donations are accepted at
checker@bix.com.

B E H I N D T H E S C R E E N

http://www.gdmag.com18 GAME DEVELOPER • MARCH 1997

setup initial conditions

while(simulating) {
DeltaTime = CurrentTime - LastTime

while(LastTime < CurrentTime) {
calculate all forces and torques
compute linear and angular accelerations
integrate accelerations and velocities over DeltaTime

if(objects are interpenetrating) {
subdivide DeltaTime

} else {
if(objects are colliding) {

resolve collisions using Eqs. 8 and 9
}

LastTime = LastTime + DeltaTime
DeltaTime = CurrentTime - LastTime
update positions and velocities

}
}

draw objects in current positions
}

Listing 1. The Simulation Loop Pseudocode.

Please use checker@d6.com.

