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lem, requiring the synthesis of player created morphologies with
authored animations for in-game actions (e.g. picking fruit from

Character animation in video games—whether manually key- a tree, throwing a spear, or dancing a jig). Preserving the style
framed or motion captured—has traditionally relied on codifying and quality of professionally authored animations as they are retar-
skeletons early in a game's development, and creating animationsgeted at runtime to extremely varied player-created morphologies
rigidly tied to these xed skeleton morphologies. This paper in- required a new approach to character animation.

troduces a novel system for animating characters whose morpholo-

gies are unknown at the time the animation is created. Our au-
thoring tool allows animators to describe motion using familiar

posing and key-framing methods. The system records the data in

a morphology-independent form, preserving both the animation's
structural relationships and its stylistic information. At runtime,

the generalized data are applied to speci c characters to yield pose

goals that are supplied to a robust and ef cient inverse kinematics
solver. This system allows us to animate characters with highly
varying skeleton morphologies that did not exist when the anima-
tion was authored, and, indeed, may be radically different than any-
thing the original animator envisioned.

CR Categories: 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation

Keywords: character animation, motion retargeting, user gener-
ated content, inverse kinematics, procedural animation, games

1 Introduction

User generated conterig an increasingly popular way to give play-
ers meaningful creative input into video games [Edery et al. 2007],

and enabling players to create the fundamental art assets—the charp,

acters, vehicles, buildings, and planets—is one of the primary de-
sign goals of the gam&pore[Wright 2005]. Allowing players

to create art assets after the game has shipped forces the code
be exible and robust enough to deal with the new, never-before-

seen content. Characters present a particularly challenging prob-

checker@d6.com
Yf braabe,renslow,jdeweag@ea.com
2f jordan.maynard,keesg@gmail.com

Our solution preserves the traditional animation work ow found in
tools such as Maya [Aut 2008], while enabling keyframe anima-
tors to create automatically retargetable, yet stylized, motion. We
bring the animators directly into the retargeting loop and have them
specify the semantics of various aspects of the animation during au-
thoring. We use this semantic data to record the motiongareer-
alizedform, and at runtime wepecializat onto the different char-
acter morphologies to generate the individual retargeted motions.
The success of this method shows the power of explicitly speci ed
semantic information in solving the motion retargeting problem.

The remainder of this section presents a high level summary of our
methods for authoring and playing animations on unknown mor-
phologies, a list of our contributions, and an overview of the ter-
minology used to describe the animated characters. Section 2 dis-
cusses related work. Sections 3 and 4 discuss in detail the author-
ing and playback of the character animations. Finally, Section 5
describes the results both qualitatively and quantitatively, as well
as how the system is tested in production and its limitations, and
discusses future work and the applicability of the system to other
games and animation challenges.

1.1 Overview

uthoring  In our OpenGL-based authoring to®pasmthe ani-
mators pose the characters, set keys, edit curves, and preview ani-
mations, much like in traditional game animation (Fig. 1). Anima-

tf?ons contain an arbitrary number ofiannels and for each chan-

nel, the animator tellSpasmwhich parts of the character to select
and which aspects of the motion are important. This semantic in-
formation is used to create an invertible functi@rthat is used to
move from thespecializedpose on a speci c character togen-
eralizedspace that is character-independent, and back again (us-
ingS = G 1!). The semantic speci cation phases for both selec-
tion and movement are the key differences—from the animator's
perspective—between authoring an animatiorSpasmversus a
traditional character animation tool.

Playback At runtime, thegeneralizedanimation curves arspe-
cializedonto the character usir§and a combinatoric technique—
calledvariants—for controlling the playback. The resulting pose
goals preserve the overall motion and stylistic details of the au-
thored animation. Stylized locomotion is synthesized for the
player-created leg morphology and layered onto the goals. The
goals are fed into an inverse kinematics (IK) solver tuned to handle



tree is a unique spine body chosen by a heuristic based on the max-
imum number of incident leg limbs and the position of the body.

The position and orientation of the bodies at the time the player
creates the character is called tlest pose Traditionally, the rest
pose of a game character is a known standard pose, but we cannot
count on any speci ¢ con guration for the rest pose. We simply
assume the player created the character in a “reasonable” rest con-
guration,? not hyper-extended or curled into a ball, etc.

2 Related Work

Traditional game character animation blends static animation data
onto xed skeletons, with occasional IK for foot placement or head
lookat [Mizuguchi et al. 2001]. When the morphology of the char-
acter is unknown, these methods are clearly inapplicable.

Motion retargeting is not a new problem, but most existing work
Figure 1: Spasnscreenshot with two preview characters. is of ine, not ef cient enough for real-time games, or requires a

large database of example motion, and no previous work consid-

ers the range of morphologies we do. Gleicher [1998] presents

con icting objectives while attaining natural solution poses. Fi- @an ofine method using spacetime constraints on example motion.

nally, passive secondary animation is added for aesthetic appeal. The paper brie y considers different morphologies, but requires
similar sizes, and only retargets to characters with fewer degrees

Contributions  The semantic speci cation concept and details for of freedom (DOF). Many other ofine methods exist with sim-
both selection and movement, the decomposition of the problem ilar limitations [Lee and Shin 1999; Popévand Witkin 1999].

into generalized and specialized spaces, and the various ways ofChoi and Ko [2000] and Shin et al. [2001] develop online meth-
formulatingG based on the animator-controlled semantics are the ods using IK, but both only consider identical skeletal topologies.
main contributions of this work to the authoring phase of the retar- Kulpa et al. [2005] support different numbers of bones along limbs
geting problem. The contributions to the playback phase include by using IK in real time, but only on humanoid topologies.

the variant technique for exposing the combinatoric variety of an-

imation playback options, the locomotion synthesizer for generat- Many of these efforts try to automatically derive the semantic struc-
ing stylized gaits on arbitrary leg morphologies, the robust, high ture of the motion and its constraints from example data, whereas
performance IK solver with its emphasis on ad hoc tunability and we have the animatora priori describe the important factors to
preconditioners for attaining natural character poses, and the pas-our system. In this sense, our systenillisstrative instead ofex-

sive secondary animation subsystem. ample based In fact, abstracting the motion, for both the con-
straints and the style, is a common thread throughout the related
work. For example, while not focused on motion retargeting,
both Chietal. [2000] and Neff and Fiume [2005] form parame-
terized semantic models for animation style on xed human skele-
tons. By contrast, our system gives the animator direct control over
the model for the motion constraints for each animation, and then
records the stylized animation curves within this model.

1.2 Character Terminology

The player creates new characterSiporeby manipulating a mal-

leable clay-like torso containing the spine, and attaching limbs and
deformable anatomical body parts chosen from a palette [Willmott
et al. 2007], including various mouths, eyes, graspers, feet, spikes

armor, etc. The nal character is composedbafdies(which in- IK for character animation is also a very well studied problem, both

clude the anatomical parts, spine ver;ebrae, and limbs), meSh.essynthetic [Girard and Maciejewski 1985; Welman 1993; Zhao and
and textures. Characters usually contain between 20 and 80 bodiesgy, /o 1994] and example-based [Gro<’:how et al. 200’4]_ Unlike

Figure 2 S.hOWS t.he relationship between a character's mesh (the ©Rmost IK solvers for character animation, which use explicit repre-
row) and its bodies (the bottom row). sentations of the angular DOF, our solver draws from the molecular
The bodies contain the position and rotation transforms, bounding dynamics (MD) literature and works with cartesian DOF and length
boxes, and hierarchical parent-child information traditionally asso- constraints [Kastenmeier and Vesely 1996; Tang et al. 1999). Fol-
ciated withbonesin other animation systems. The bodies also con- lowing the SHAKE algorithm [Ryckaert et al. 1977], most of these
tain tags—callectapabilities or caps—describing the body's se- ~ MD-inspired IK techniques use a linearized error xup during con-
mantics to the animation system. For example, the body associatedstraint iteration, but we use a nonllnear length correction, S|mllqr to
with a hand mesh has tigeaspercapability. Bodies can have scalar  Jakobsen [2001]. Our IK solver differs from previous work in its
deform curveshat control low level mesh animations on the body. tWo-phase architecture and its explicit emphasis on ad hoc tunabil-
Examp|es inc|ude Opening and C|osing handsy mouths’ or eyesy earéty and custom precondltloners, YVh|Ch we haVe fOUnd |nVa|Uab|e fOI’
drooping, toes bending, etc. The deforms are standardized acrossnding natural poses under con icting goals.

the various types of anatomical body meshes (e.g. all mouth bod-
ies respond to the open/closed deform). This allows the deforms
to be opaque to the animation system, so we ignore them for the
remainder of this paper.

Synthetic locomotion has often focused on bipeds [Bruderlin and
Calvert 1989; Bruderlin and Calvert 1996; Sun and Metaxas 2001].

structures, including loops, but testing revealed theriate complexity of
The character bodies form a directed acyclic graph, with a serial a general graph was actually a hindrance to player creativit
chain of spine bodies at the root of the tfe@he root bodyof the 2This assumption can obviously prove to be false, but in ouinigs
players create the characters in acceptable poses, andre@satjust the
LEarly prototypes for th&porecharacter creator supported more general  rest pose after seeing their character animate.




Girard and Maciejewski [1985] develop a system for arbitrary in- choose the graspers in the front halfspace of those local bounds.
dependent legs, but do not address stylistic variation or animator in- The setspace option allows the animator to separate out bodies
put. Procedural secondary animation, both physical [O'Brien et al. even when they are clumped relative to the character as a whole.
2000] and fake [Barzel 1997; Barzel et al. 1996] has been discls
but our system dynamically discovers the sub-trees to be simulate
and integrates—but does not interfere—with the authored data.

gExtent Queries There is also aextentconstraint, which can be
FrontMost, BackMost, RightMost, etc. and will always select
zero or one body, the most distant body in the given extent direction

i . i (ties are broken arbitrarily).
3 Animation Authoring _ _ _ o _ _
Limb Modi er  Finally, there is dimb modi er, which performs

) _ to SpineSegment When the unmodi ed query selects bodies, this
1. Select.The animator chooses which parts of the character he modi er will “walk up” any parent limbs to the rst bodies with the

or she will animate. spinecapability, effectively nding an approximation to the clavi-
2. Pose.The animator moves the selected parts of the character ¢le/shoulder (or hip/pelvis) bones for a given selection. This, for
to a new position and orientation. example, allows the animator to select and pose the appropriate

. clavicle(s) for another channel's selected graspers.
3. Key. The animator records a key frame for the selected and (s) grasp

posed parts of the character.

4. Preview. The animator plays back the animation, or a portion
of it, to check the work, repeating the process based on the The game code also constructs and evaluates context queries on the
visual feedback. characters for use in gameplay Al reasoning, inventory, etc. Again,
in traditional games the skeleton is known and the code can simply
refer to explicit bone names or indices, butSporethe code must
describe the semantics of the selection just as the animators do.

3.1.2 Discussion

Spasnpreserves this basic work ow, enabling animators comfort-
able with traditional tools to create retargetable motion. We now
discuss the modi cations to each step in detail.
We looked into creating context queries automatically by clicking
3.1 Selecting on character bodies iBpasmbut we ruled this out as combinator-
ically infeasible. There are many different ways to select the same
In traditional character animation, the animator clicks the mouse on P0dy with completely different context queries, so the bene ts of
the character skeleton to select the bone or locator he or she wants t§1 @utomatic interface were outweighed by the potential errors in-
pose via forward or inverse kinematics. The selected object is usu- freduced trying to resolve the ambiguities. From a work ow stand-
ally referenced by a simple index or name in the animation. When POINt, the animators set up their preferred channels once, and reuse
the runtime skeleton is not known at author-time, this direct index- them in multiple animations, so this has proven not to be a burden.
ing is impossible, so we require the animatordescribewhich
bodies are selected using a semantic query. After a channel's se3.2 Posing
lection is speci ed, the animator can then click on any one of the

selected bodies of a character in the viewpoddtvateit. As with selection, the semantics of the motion—called rieve-
ment mode-is speci ed by the animator so the motion can be re-
3.1.1 Contexts targeted. The movement mode dictates how the pose data is inter-

preted for the channel by describing the important characteristics
In our system, the animator uses a chanrmistextto describe the ~ Of the motion (e.g. whether the movement is relative to the ground,
bodies the channel poses. Contexts are constraint-based Iters ovetor depends on the size of the character or the length of the limb,
the bodies of the character. The context selects zero or more bodie<C.). Atalow level, itis a speci cation for the coordinate frame in
by intersecting the speci ed constraints, in a manner similar to e- Which movement is recorded, and it is used to construct the gener-
mail and music lters [Moz 2008; App 2008]. We use the phrase alization functionG and its inverse, the specialization functién

selected bodie® refer to the results of the context query, ative Once a body is selected and activated, the animator can pose the
bodyto refer to the unique selected body with which the animator active body with Maya-style position and rotation manipulators. If
is currently interacting irBpasm multiple bodies are selected by the primary context query, all of

the bodies will move as the animator manipulates the active body.
Type The animator builds up primary context queryo select The active body will follow the mouse manipulator, and the other

bodies on the character by rst specifying thgpe of the query. selected bodies will move with the active body based on the move-
The type speci es the body capabilitgrasper mouth spine root, ment mode of the channel as described below.

etc.) to be selected. This query will select all the bodies on the

character that have the speci ed cap, so if the query grasper 3.2.1 Generalization and Specialization

and the character has four graspers, four bodies will be selected.

The position and rotation of a given bodly on a speci c char-
acter in character-relative Euclidean space (i.e. what is displayed
in the Spasmviewport) is referred to as thspecializedcoordi-
nates or pose of the bodgsi . The functionG takes the special-
ized pose to the body-independeygneralizedposition and rota-
tion coordinatesgg, by qg = G(b;Qgsi;m). Similarly, given

gy and a bodyh, the functionS produces thes; for that body,

Osi = S(b;qq;m). Them parameter controlmirroring across
ethe sagittal plane, and is discussed in Section 4.1.2.

Spatial Queries The animator can narrow the selection
by specifying different spatial constraints for the selec-
tion, including Front/Center/Back, Left/Center/Right, and
Top/Center/Bottom. Each of these spatial constraints can be
relative to the character's bounds (the front or back halfspaces of
the entire character's bounding box, with the side constraints being
inclusive of the center zone), or relative to thetspaceof bodies
with the given capability. For example, if a character has four
graspers, but all are in the front halfspace of the character, then th
regular front constraint would choose all of the graspers, butrd fro  During body manipulation and posing 8pasmthe active body's
setspace query would make a bounding box of the graspers, thengs are continually generalized tp,, and then the resultingg is



(a) Rest1 (b) Reach 1 (c) Rest 2 (d) Reach 2

Figure 2: Secondary RelativeMioving the green external target affects the reach pose and the liee dput not the rest pose.

specialized onto each of the channel's selected bdaliggelding causesS to scale the pose based on fimab lengthof the posed

gsi . This process includes the active body, and bec@useS *, body. The limb length of a given body is the path length from the
the active body appears to the animator to be directly manipulated body to the nearest spine segment, forming an approximation to the
in Euclidean specialized space, but it is not treated as a special casavorkspace of the body. Specialization will result in large move-
internally. The active movement modes determine the speci ¢ def- ments on long limbs and small movements on short limbs.

inition of G, which in turn determines how the other non-active

selected bodies move with the active body. Ground Relative The ground relativemode distorts the coordi-
nate frame of the movement such that the z-axis is vertical and
3.2.2 Movement Modes scaledO to 1 from the rest pose to the ground. In generalized co-

ordinatesgy, = 0:0 speci es the rest pose height agd, = 1:0
The movement modes describe the semantics of the motion— SPeci es the ground height. This way, wheg, = 1:0is special-
what's important about it for expressing a desired intent. They are ized onto different bodies, each will hit the ground, so an animation
ad hoc, in the sense that additional movement modes are added o®f picking up a rock or pounding the ground will generalize across
an as-needed basis when the animators are unable to express an igharacters with different grasper heights with the same tirhing.
tended movement so generalizego a large set of characters, but )
they are usually designed to work together and layer when possi- Secondary Relative Movement A secondary context quetgts
ble. All movement modes have the character rest pose as a sort ofhe animator specify another set of bodies to which the primary

all characters will be at their rest poses, regardless of the mode. ~ to the mouth” or “clap hands” across characters with different rel-
ative positions of hands, mouths, etc. The secondary context also

Identity The most basic movement mode is the ident@y,= allows anExternalTarget query type, giving the game dynamic in-
S = 1, also calledabsolute mode In this mode, thegs of the put into the specialization of the animations. For example, the code
manipulated body are simply copied to thg by G, which are can set the target to a fruit location for a “pick fruit” animation

then copied to thgs of the other bodies bg—all selected bodies or have two characters “shake hands” by setting the target of each
have the same character-relative position and rotation. This modecharacter to the other character's grasper.

is not very useful for animating positions, but it can be useful for ] ) o

rotations, allowing the animator to specify a uniform end orienta- G distorts the motion frame so the x-axis is the vector between the
tion for selected bodies regardless of their rest orientation. Posing"est position of the body and the target, witld at the rest position

absolute mode for rotation. G, so a pose that puts the body at the target will change as the tar-
get moves, even if thgy for the pose is not changing. Figures 2(a)
Rest Relative In contrast to absolute mode, liest relativemode and (c) show the affect of moving the target while in the rest pose;

G computes thejy as a delta from the rest pose of the body. The the two character poses are identical because the rest pose is inde-
bodies move relative to their rest poses—if the manipulated body is pendent ofG as mentioned above. Figures 2(b) and (d) show the
moved 1 unit to the left of its rest position, all of the bodies move poses for onegy but with different target positionshese two dif-

1 unit to the left of their respective rest positions, and similarly for ferent specialized poses are generated from the same generalized
rotation. Both position and rotation can have rest relative mode setpose In the lower wireframe images in Figure 2 you can see the
independently. A hand wave animation might use rest relative posi- channel's red animation curve being distorted as the target moves,
tion mode to pose a grasper because the absolute position isn't im-
portant, just the relative waving motion, but absolute rotation mode  3\e plan to add sagittal relativemode soon that will do the same dis-

so the grasper is pointed up regardless of its rest pose. tortion for the sagittal plane, allowing animators to exgreand claps and
. . other animations that have bodies that cross from left td gt increased

Scale Animators can specify scale modéhat affects hows and generalization quality.

S compute position data. If no scale mode is set, dge posi- 4There is a modi er calledSecondaryDirectionalOnly that doesnot

tion curves are the same scale on all character€réatureSize rescale the frame's x-axis, so that the direction changesesmatget moves

mode is enabledS performs a nonuniform scale to tlg;, pro- but the scaling of the pose does not. This modi er allows thienators to

portional to the bounding box of the character. Small characters getexpress a punch movement in the direction of the target, witteupunch
small curves; large characters get large curkésblLength mode changing shape as the target moves closer to the body.



while keeping the local style information intact. Figure 3 shows the the given character and active body, and the splines can be manip-

example for two characters with very different morphologies. ulated in specialized space (which is then generalized back to the
stored keys). Some animators prefer to manipulate the generalized
curves directly (which control the actual data being interpolated,
but can be nonintuitive), while other prefer the specialized curves
(which appear to be traditional Euclidean curves, but are different
for each selected body), so we provide both options.

Key Remapping When an animator changes the movement mode
during authoring (e.g. to experiment with the different op-
tions to increase generalization of the animation, or to repurpose
an animation for a different but similar movemen@, for the
channel changes. This invalidates any existing keys saved
with the old G, so weremap the existing keys such that the
active bodybs gqs do not change. We constru8qg from

the pre-modi cation movement mode, ar@hey from the post-
modi cation movement mode, and then remap each key'sby

Ognew = Gnew (b; Soia (b;qg,, ;false);false). This leavedds

gs curve and Euclidean motion exactly the same, while qge

are converted to the new movement mode. By keeping the active
body's specialized curve unchanged, we give the animator direct
control over what aspects of the old versus new movement modes
he or she would like to preserve. For example, by activating a body
Lookat We also allow dookat controllerto be activated when at the end of a long limb, and then switchihgmbLength scal-
secondary relative mode is enabled. This mode aims the rotationing off, the large movement will be preserved on the active body
frame's forward vector towards the target object. The head body while the corresponding old small movements on short limbs will
in Figure 2 has a lookat controller applied to it; notice the head fol- become large movements. By contrast, activating a body on a short
lowing the target during the reach. The lookat mode de nes a frame |imb and then removind.imbLength scaling would perform the

for recording relative rotation poses—it does not completely spec- opposite remapping: all of the curves would become small.
ify the rotation of the body—so a “nodding head” movement can

be performed while looking at the [potentially moving] target. Soft
joint limits are applied to the lookat controller to damp its in uence

as the target moves into the half space behind the selected body, al- . . .
lowing characters with multiple heads facing in different directions SPasmallows the animator to load multiple characters simultane-

(a) Rest (b) Reach

Figure 3: Two different characters posed with the samge

3.4 Preview

to use an appropriate head to follow a target. ously, all bound to the same animation data as shown in Figures 1
and 3. The animator can edit the animation data on any loaded
3.2.3 Blending character at any time and instantly see the changes re ected on the

other characters, because tpefor all the characters are derived

nd from the sharedjq (Section 3.2.1). This enables the animator to

h Preview and edit the animation on many different morphologies si-

multaneously, and directly compare how changes to one character's

pose generalize to other characters. This allows the animator inter-

¢ active control over the quality of the motion retargeting across a set

the animator assigns them a matching blend group. The resultingOf examp"? ch_aracters and greatly tightens th_e authoring feedback

qs for each channel are blended using traditional weighted position [°0P- Preview inSpasnuses the same code as in-game playback to

and rotation blends. Because the movement modes are set at au$UPPOrt WYSIWYG authoring.

thor time and xed for a given channel, the animators use blends

between channels to affect a continuous change from one move-4 Animation Playback

ment mode to another. For example, a character can grab a piece of

fruit at the external target using a grasper, and then put the fruitin ¢ ryntime, the Spore animation system presents a typical ani-

the character's mouth in a single uid movement by blending be- 4ti0n Application Programming Interface [Muratori et al. 2008:

tween exterr_lal target-relat_lve and internal target-relative channels poomecht and Dachary 2006] to the game, including playback,

over time using varying weights on each channel. asynchronous animation loading, caching, queing, layering anima-
tions with weights, etc. The rst time an animation is played on

Multiple channels can select the same bodies, so a priority al
grouping system is in place to give the animator control over whic
channels contribute to a body's pose. The rst channel to select
a body takes ownership of the bddior its animator-speci able

blend group Later channels can share ownership of the body i

3.3 Keying a given character, a speclahd phaseoccurs. Then, every frame,
o _ for any animations playing on a character, thefor the channel's
The animation key frames record the generaliggdor each en- selected bodies are computed ustgnd blended together. The re-

abledkey data curvdor a channel, and intra-key interpolation oc-  sulting pose goals are composed with any synthesized locomotion
curs on theseg. The key data curves include position, rotation, the and fed to the IK solver, and then secondary animation is applied.
various deform curves, weights on each curve, and miscellaneous

discrete keyable informatichThe animators have explicit Hermite 41 Bindin

spline control over the keyegly curves. The raw splines on tiag ’ 9

can be manipulated, or the curves can be specializ&pbgnonto L .
P P Spby When an animation is played on a character for the rst time, the

5More precisely, ownership is allocated separately to eaghated de- animation and the character go throughired phaseto determinef
gree of freedom, so ownership of just the rotation is possible
6Examples include per-key visual, sound, and data events. “What You See Is What You Get




andhowthe playback will occur, using techniques calldnching
andvariants respectively.

4.1.1 Branching

The bind phase begins by evaluating a seriesminch predi-

cateson the character. These three-valued predicates (false,

ignore) constrain the set of characters to which the animation

will bind, allowing the animators to split up the space of char-

acter morphologies. For example, one branch predicatdpis

rightSpine, which evaluates a heuristic for whether the character's (a) Mirrored (b) Not mirrored

spine is predominantly prone or upright. Other predicates include

HasGraspersandHasFeet If the animators cannot create a sin-  Figure 5: An asymmetric character with and without sagittal plane
gle suf ciently general animation—and we cannot modify the sys- mirroring on a grasper channel. The grasper curve to the left in
tem to generalize for the action—they can create multiple distinct each picture is the unmirrored curve.

“branched” animations for the original movement. For example,

animations for tool usage are branched on whether the character

has graspers to manipulate objects, or whether the character useﬁ/lany Variant Groups A more complex example involves pass-

|ts.m0uth because it has no graspers. Branching animations is a SOing a fruit from one grasper to another using two grasper channels.
lution of last resort, because it increases content creation costs b

forci ol imati b thored and tested f i Wariants allow the game code to arbitrarily choose both the giving
orcing muftiple animations to be authored and tested for an action. 5, receiving graspers. Each combination of graspers participating

in the handoff generates a single variant. If we assume the bod-
ies labeledA andB are the only two graspers on the character,
two variants AB andBA , are generated. The rst hands the fruit
from A to B, and the second frorB to A using sagittal mirror-

ing. The variants do not have to have the same cag @ndB

are mouths, andl, 2, and3 are graspers, an animation to put a fruit
in a mouth could generateA, 1B, 2A, 2B, 3A, and3B. The
animator can specify the spatial relationship of the varying chan-
ﬁels, so ifl, 2, and3 are graspers, and the two channels are the
same-side-constrained, two variants will be genera?8dand 32.

If the channels are opposite-side-constrained, the system will gen-

4.1.2 Variants and Mirroring

As described in Section 3.2.3, blend group ownership and priority
information is computed during the bind phase. The system then
computes “how many different ways the animation can play on the
character”. Each “way” is calledaariant The game code choses
which variant is played at runtime as described below. Variants
are best described using examples. Figure 4 depicts an abstrac
character with ve bodies, labelel, B, 1, 2, and3.

e erate four variantsi2, 13, 21, and31. No spatial constraints will
e generate all six permutation$2, 13, 21, 23, 31, 32.
0 Variant Product This modi ed cartesian product is called the
e variant productof the bodies. There is no limitation on the channel
arity of the variant product or on the types of the channels involved.
9 The animator can also group channels so they vary together and do

not generate additional variants. For example, an animation might
have a grasper channel and a grasper-shoulder channel usiry a

Figure 4: Abstracted character and bodies, viewed from the front. modi er. Setting these two channels to the same variant group will
cause the shoulder to co-vary with the appropriate grasper.

Single Variant Group  If we want to create an animation for grab-

bing a fruit from a tree with a grasper, the character only needs a4.2 Gaits

single grasper to grab the fruit, but there is no way at author time to

know which grasper should be used—the position of the fruit rel- The characters undergo legged locomotion across uneven terrain
ative to the character and the number and distribution of the char- and along curved paths with discontinuous input velocities. The
acter's graspers are unknown. We allow the animator to mark a animators can control the feet for non-locomoting animations, but
channel so its curves are played on oaheof its selected bodies  we use agait systento generate the locomotion to ensure we meet
at atime. A distincvariantfor the animation is generated for each  the aesthetic requirements that feet not slip and that the leg move-
grasper selected by the marked channel. The game can play thegnent be plausible based on the character translation and rotation.
variant for the most appropriate grasper dynamically based on arbi-

trary game-speci c criteria: for example, which grasper is closest Leg Groups The player generated characters can have any num-
to the fruit, which one is not already holding another object, etc. ber of legs of different lengths in arbitrary arrangementdeghs
Concretely, if all the bodies in Figure 4 are graspers, ve variants de ned as a path through the tree of connected limb segments with

will be generated, one for each body; B, 1, 2, and3. afootbody at the leaf and a spine segment at the base of the tree—
. — T . ) . called thehip. Figure 6 shows some examples of player created

Sagittal Mirroring ~ An animation is created with arbitrary chiral-  |eg con gurations with various branching structures. The legs are

ity, and the system automatically generateségittal mirror dur- clustered into one or more groups of roughly equal length. The leg

ing variant generation. The animator can control f®epecializes  groups areharmonizedby approximating their length ratios with
curves when mirroring. Figure 5 shows the two mirroring possibili- - sma|| rational numbers. The ratios are used to compute the relative

ties on an asymmetric character for the sapeFigure 5(a) shows frequency of the gait cycle applied to each group.
theqgsi with m (from Section 3.2.1) set to false on the left side, and

true on the right side, while Figure 5(b) shomsset to false for all Foot and Hip Posing For a given leg group, the feet attached to
bodies. Notice how the positions and orientations of the graspers ineach unique hip are ordered, and the gait system generates a cycli-
Figure 5(a) are mirrored appropriately across the sagittal plane.  cal pattern of foot movements by assigning values to the locomo-



Figure 6: A variety of player-created leg con gurations.

tion duty factorandstep triggerparameters. The duty factor is the strictly within the character workspace, but satisfying them
fraction of the duration of the overall gait cycle time that the foot might cause the character to attain an unnatural pose.

is on the ground [Alexander 2003]. The step trigger is the offset )

from the overall gait cycle at which the foot begins its particular ~ 4. Path Independence. IK solvers for underdetermined sys-
cycle [Rotenberg 2004]. The hips are translated and rotated as the ~ tems, especially with preconditioners relying on frame-

feet are moved for believable torso motion. The foot's path during coherence, can givpath dependensolutions—the solu-

its ight phase is controlled by the animators@pasnusing either tion at timestept depends on the solutions at previous
a custom set of parameters for the arc, or a graphical editor for the timesteps [Klein and Huang 1983; Yan et al. 1999]. This is
position and rotation of the foot in a normalized space. The nor- undesirable for a number of reasons (e.g. introducing unpre-
malized path is then applied to each foot, taking into account the dictability into playback [Tolani et al. 2000]). Highly redun-
leg length. This system is separate from the generalization and spe- ~ dant manipulators with path dependent solvers can eventually

cialization system described above for historical reasons. We have  tie themselves in knots in our experience.
considered merging them but have not had time.

. . . Overview Robustly satisfying the objectives above led us to cre-
Gait Styles  The system can handle multiple gait styles layered on 40 5 ney K solver with several differences from traditional solvers.

a character at the same time. The animators author a mapping beThe Particle IK Solver treats the character skeleton as a set of 3DOF
etk character movement speed and the gait parameters for grouDfsarticles with 1DOF length constraints between them. A simple it-
With 1 Nieet 6, and the system procedurally generates the pa- erative constraint solver is run over the particles with various pre-

ratmetelr St Stg’ l?\i‘lfonfeet ¢ f7' The tmoven:re]nt preed IS used tlo . conditioners and parameters for tuning its behavior both statically
Interpolateé between SEets or parameters authored for various velocl-g , dynamically. The nal body DOF anmeconstructedrom the

ties. Additional gait styles can be applied to a character for special particle positions and length constraints after the solve. It is a two-

effects, like limping, or a Iu_mb_erlng gait _for large _characters. Dif- phase solver; the rst phase solves for the spine pose, and the sec-
ferent leg groups could be in different gait styles simultaneously on ond phase solves for the limb poses, treating the spine as xed. We
the' same character. For ex_ample, two short legs could be ruNNNYattain more natural poses with the two-phase solver than we did
while four long legs are trotting. with monolithic one-phase solvers because we can tune each phase

A heuristic is used to determine if a character with no feet should {0 the particular idiosyncrasies of spine versus limb movement. In
oat above the ground or crawl along the ground. Crawling char- fact, the Particle IK Solver is speci cally designed to support exi-
acters have some spine bodies converted jrseudo-feeand an ble tuning and the addition of maiayl hocpreconditioners and sub-
inch-worm-like gait is generated for these bodies. tree solvers. We implemented several mathematically more com-
plex iterative and nonlinear equation-based IK solvers (including
several avors of Cyclic Coordinate Descent, Jacobian methods,
Constrained Dynamics, etc.), but in our experience these solvers
were slower and less amenable to tuning due to their complexity
The animation systemBarticle IK Solveruses the body pose goals  and nonlinearity. This was a major impediment to our ability to
set by the various subsystems already discussed, and attempts teune the solver code to attain natural poses. The simple architec-
satisfy them by forming a system of constraints over the linked ture and core implementation of the Particle IK Solver allows us to
character bodies. Becaus8porecharacter usually has many fewer  make speci ¢ ad hoc tuning adjustments and special cases, without
goals than DOF, the IK equations form anderdetermined system  compromising the quality of the solution in other areas of the pose.
In general, underdetermined systems admit in nite solutions, so the |n some sense, the design of the solver gives us “local control” over
solver uses the extra DOF to optimize secondary objectives. Thethe solution algorithm, a characteristic we feel was missing from
Particle IK Solver has many competing high level objectives: our previous, more “advanced”, solvers.

4.3 Particle IK Solver

1. High Performance. It will be run every frame on every pro- o
cedurally animating character in the game. 4.3.1 |Initialization

2. Accuracy and Naturalness in Workspace. It should com-
pute an accurate and natural looking solution pose if the goals The IK solver analyzes the character's body goals and morphology
are within theworkspaceof the character. to nd the complete sub-tree that “has IK”. A body is said to “have
IK” if it or any of its children have pose goals. If a sub-tree does
not have IK, it is ignored by the solver and it becomes a candidate
for procedural secondary animation as discussed in Section 4.4.

3. Graceful Failure. There are three main failure modes, and
each should result in a natural pose: Figgials can be out-
side the workspacethe character should reach for them in-
stead of mechanically hyperextend. Secagmhls can con-
ict and lead to overdetermined constraints for sub-trees of The Root The root body is special-cased in the IK solver and
the character. Third, thgoals may be implausiblethey are always has IK. Itis forward kinematically controlled by the anima-



Spine Splines The character's torso is usually composed of many
spine bodies as shown in Figure 8. Solving the spine directly with a
particle at each joint produces kinks and unnatural poses. We avoid
these problems by only allocating particles and constraints at IK
branch pointsalong the spine. Branch points are caused whenever
more than one child of a spine body has IK, and at non-spine
spine transitions in the IK chains moving rootwards, such as limb
attachment points. We generate a particle at each IK branch point
on the spine, with a length constraint between each, no matter how
many spine bodies exist between the branch points. In Figure 8's
example, there are no branch points along the spine, so a single
length constraint (the blue line) is generated for the entire spine.
Figure 7: Particle and constraint allocation for a limb. If the feet in the gure had goals, there would be branch points at
the leg attachment bodies, and multiple constraints along the spine
would be generated. Any spine particles are associated with the
tors and it is not affected by the solver iteratiénghe root's pose  child spine body of the joint at which they are allocated. This is a
is computed and the non-root bodies are hierarchically transformed Unique map since the spine is a serial chain. At each spine particle,
into the root-relative rest pose This pose is used as a precondi- an additional constraint is allocated to the root-relative rest pose
tioner, giving the root goal signi cant in uence over the nal pose  Position for theanti-buckling algorithndescribed below.
of the character.

Delegated Goals Some body goals ardelegatecto the body's
parent to improve the solved pose. For example, mouths attached
to the spine delegate their pose goals to their parent spine segment.
This keeps the mouth from moving independently of the spine—
if the animator moves the mouth, the spine will bend to place the
mouth at the goal and the motion will be more natural than if the
mouth had pivoted at its attachment joint.

Particles and Constraints Particles and constraints are allocated

to the joints and bodies depending on the caps and the solver phase.
Details of the allocation strategy for each phase are below in Sec-
tions 4.3.2 and 4.3.3. Particles are 3DOF points in Euclidean space.
Full 6DOF body goals are converted to 3DOF position goals at
the joint position of the body, avoiding the need to handle 6DOF
goals inside the solver [Meredith and Maddock 2004]. Constraints
are 1DOF length constraints between two particles. A particle can
have any number of constraints attached to it. Each constraint con-
tains a “mass” value for each of its two endpoint particles, allow-
ing the same particle to appear to have different masses for tuning
purposes when accessed from different attached constraints. The
constraints are enforced iteratively using a nonlinear length correc-
tion step [Jakobsen 2001], where the computed length error is usedNext, the IK solver ts a spline to the spine body joint positions be-
to adjust the position of each particle along the constraint axis in tween each pair of IK branch points, using linear least squares, and
inverse proportion to its mass—a particle with a larger mass moves stores the spline parameters in the local space of the particle's as-
less during length correction. The mass values have no physicalsociated body mentioned above. For a given spine spline segment,
meaning, they are simply scalar values that control the impact of only state at the particle endpoints is available during reconstruc-
the constraint solution on each endpoint particle. The length error tion, so we must use a single spline to span the segment. It is com-
for each constraint is fed throughCil continuous piecewise func-  mon for player created spines to have many in ection points, and
tion that determines the resulting correction distance, enabling soft cubic splines did not t adequately in many common cases, while
constraints. Constraints are allowed to stretch and compress to givequintic Hermite splines proved suf cient. In Figure 8, the red dots

Figure 8: A typical character spine and spine splines.

an empirically more organic feel to the generated poses. are the spine body positions, the yellow curve is the computed cu-
bic spline, and the green curve is the quiritieve then step along
4.3.2 Spine Phase the spline—transporting a coordinate frame withyitaxis paral-

lel to the spline tangent—to a point near each body's position. We
In the spine phase, we allocate particles and constraints to the spingecord thet parameter value along the spline and tbiative offset
and to simpli ed versions of the limbs. Each body with a goal in a andrelative orientationof the body with respect to the transported
limb sub-tree is given a single length constraint directly to the spine. frame. This information allows us to reconstruct the coordinates of
The distal particle is set to the body goal position, the proximal the interior spine bodies given a posed spline, so the spine bodies
particle is set to the spine joint, and the constraint length is set to interior to a spine constraint can be ignored during the solve.
the rest chord length of the simpli ed chain. The yellow line in
Figure 7 shows an example, with the blue dot showing the spine Constraint Iteration and Anti-Buckling Once the particles,

attachment point of the simpli ed limb constraint, and the red dot constraints, and spine splines have been constructed, the spine
showing the grasper's pose goal. phase constraint solver iterations begin. The constraint solver has

8Immediate children of the root can have a slight in uence onrtat's 9Note, the spline endpoints are the joint positions of the and last
nal pose, but this in uence is computed after initializatio constrained spine bodies, not the body positions.



inner and outer iterations. The inner iterations loop over the con- the pose goal is very far (resp. close) from the character, the limb
straints, from the leaves inwatl The outer iterations loop overthe  will be highly stretched (resp. squashed) alagg The resulting
inner iterations a xed number of times (5 in our implementation). length constraint violations will be handled during the constraint
iteration. The aim preconditioner keeps the limb in a natural pose
as it compresses and extends, and favors rotation at shoulders and
hips. Simply running the constraint iterations from the root-relative
rest pose leads to unnatural poses, as the goal error is distributed
poorly along the limb. Other IK algorithms try to provide tuning
parameters to ameliorate this problem [Welman 1993]. Our aim
preconditioner leads to more natural poses in our experiments, but
it relies on the temporary violation of the length constraints, which
is not supported by most IK algorithms.

The simpli ed limbs are allowed to compress to 10% of their rest
lengths during this phase, under the assumption that the limb will
bend to hit the pose during the limb phase. The shape of the spine
is monitored during the outer constraint iterations, and a simple
heuristic metric for whether it hasuckled (folded over onto it-
self) into an unnatural pose is computed by comparing the angles of
the neighboring spine constraints. If buckling is detected, the con-
straints to the spine's root-relative rest pose are smoothly enabled
which pulls the spine back to a known-good con guration. The end
result is a blend between the buckled pose and the root-relative restFor branching limbs, the algorithm computes the aim distortion
pose, which has proven to be a reasonable compromise betweerransform by forming a weighted average of the goals in a sub-tree.
exibility and robustness in our tests. It then recurses outward to each child branch point, and repeats un-

Reconstruction After the constraint iterations are completed, the tilitaims the leaf serial chains.

spine pose is reconstructed from the particle positions with an out-
ward iteration. The root's pose is known, as mentioned in Sec-
tion 4.3.1. Each spine particle's position is adjusted by projec-

Reconstruction The constraint iteration is identical to the spine
phase (without the anti-buckling algorithm), and after it is com-
plete, the limb positions and orientations are reconstructed. Posi-

t'ﬁn. 'E/C?S? tr?? cct)nst;%l(r)}t;{(;roigqns d'd. notl convetr%e to an allowed tion reconstruction is also similar the spine phase. Because we have
shrink/stretch factor (10% 6 in our implementation). a full set of particles and constraints for the limb bodies, we only

We reconstruct the orientations of spine bodies associated with IK need to compute the twist around the constraint axis to complete a
particles by computing a tangent vector at both the rest and the body's orientation. In the case of a body with no cross-constraints
posed position. We then construct the minimal-twist rotation be- on its particles, we compute the minimal-twist rotation from the
tween these tangents, and use it to rotate the root-relative rest ori-root-relative rest pose to the nal pose and use it to transform the
entation of the body. Any delegated orientation goals are then body’s rest orientation to the nal orientation. If there are cross-
blended into the body. Once the position and orientation of the constraints, then the orientation is fully determined (or overdeter-
particle-associated spine bodies are computed, the intra-spline bodmined) and we pick the rst two constraint axes to form the posed
ies can be reconstructed by the frame transport discussed aboveframe. We have considered a minimization over the potential ori-
The technique for computing the tangents at the particles dependsentations similar to theelative orientationproblem in photogram-

on the constraint topology. If the particle is in two spine constraints, metry [Horn 1990], but it has not proved necessary.

the tangenty;, is computed using a three-point-difference with the

neighboring spine particles; = (pi+2  pi 1)=2. If the particle 4.4 Jiggles

is an endpoint, we use the tangent of the rootward neighbor particle

(which will either be the root or an interior particle, and therefor tpere js no robust way for an animator to select the bodies that are
known) and solve for the tangent of a natural cubic spline given 4 required for a given motion during authoring, but these bod-

vi =0, yieldingvi =3(pi 1+ p)=2 Vi 1=2. ies should have secondary animation applied to them for aesthetic
) quality [Thomas and Johnston 1981; Lasseter 1987]. Therefor, if a
4.3.3 Limb Phase sub-tree of the character does not “have IK”, a very simple highly-

. . damped pseudo-physical dynamics simulator—calliegles—is
The limb phase of the IK solver uses the posed spine and solvesgpjied to the bodies based on a heuristic for exibility, placement,
for the limb con gurations. In this phase, particles are allocated at anq type. The important factors are that the “jigglable” sub-trees
every limb joint, and constraints are allocated for every limb body 5. dynamically determined based on the bodies the aninies
(the red points and green lines in Fig. 7). If a body has multiple notselect, and the simulated movement is completely passive with
direct children with IK goals, cross-constraints are added between regpect to the keyed bodies and does not feed back to the rest of
them so they retain their relative positions. the character. This latter restriction keeps the animator's motion
Preconditioning The limb constraint solver uses aim precon- authorltatlve over the selected parts of the character, while the re-
ditioner. The spine attachment point of a limb sub-tree is computed Mainder of the character merely responds to the keyed movement
given the newly posed spine, and then the limb sub-tree is distortegWith plausible secondary motion. Our original secondary animation

(oraimeg such that ts IK particles are at their goal positions before SyStem—calledViggles—set goals for the IK solver and affected
the constraint iterations start. the animation pose goals, which negatively impacted the quality of

the animators’ work.
We will describe the limb aim distortion for a serial chain limb rst,
where there is a single particle at the leaf with a pose goal. A vector
v, from the spine attachment point to the leaf particle in the root-
relative rest pose is computed. Then a vesipifrom the spine o ] )
attachment point to the IK goal for the particle is computed, and a We have presented an animation system capable of playing anima-
minimal-twist rotation is generated to taketo vg. Finally, ascale tions on characters with wildly varying morphologies, characters
factor alongvg is composed with the rotation to create a transform that did not exist at the time the animations were authored. The
that rotates and scales the limb particles such that the end particle isahimations retain stylistic details as they are played, and the system

at the pose goal. This transform does not take the constraint lengthsallows animators to control the way the animation is generalized
into account, nor does it scale in directions orthogonalgtoso if across characters. The animators are able to use familiar work ow

to create these animations. The character gaits are synthesized with
Onward iteration distributes the position error immediatsigce the stylistic variations tuned by the animators. An ef cient IK solver,
leaves contain all the initial error. tuned to return natural organic movements, poses the character ev-

5 Results and Discussion




ery frame. A simple procedural system applies subtle secondary Animators learning the system need training on how to create con-
animation for believability. text queries and usBpasm but they create complete animations
on a single character within a few hours. However, it takes weeks
Testing and Performance The animation system presented has to build up an intuition about which kinds of motions generalize
been implemented and has undergone thorough testing. Qualita-across a wide range of characters and which don't. The system is
tively, players seem amazed when the character they just createccomplicated, and there are multiple equivalent ways to author an
“comes to life” and expresses emotions via animation. The in-game animation on a single character that specialize completely differ-
editor begins playing animations on the character as soon as theently onto other characters.
player adds feet, mouths, or graspers. Quantitatively, we stochasti- . . . L o
cally test the animations against an ever-changing database of charLimitations - The current animation system has many limitations.
acters uploaded from the game. A team of animation testers plays | N€ current selection and movement modes cannot effectively ex-
the animations on a range of characters and reports failures using?’€SS & motion such as *hug each other” or “rub your chin” be-
a spreadsheet as shown in Figure 9. The fail cases reveal plain olcC2USe the system has no understanding of volume and boundaries.
code bugs, aesthetic generalization issues that can be addressed B{f€ /S0 completely ignore intra-character collision because it was
animators with the existing features, and generalization issues that®0© dif cult to solve the nonlinear workspace problem for arbitrary
need additional features or branches (Section 4.1.1) to solve. WeMorphologies within our time constraints, but tis clearly a aw in
have tested several hundred creatures and a thousand animation&'€ System. The Particle IK Solver's failures could be more grace-

over the development of the system. The current pass rate is ~909¢ul- The current anti-buckling technique works most of the time,
and is continually improving. but it is simplistic and can appear heavy-handed when it engages.

Also, the path independence of the IK solver causes singularities in
the solution spact. We push the singularities around to con gu-
rations the character is unlikely to hit, but the animations can still
twist unrealistically if the pose comes close to the singularity.

Future Work In addition to addressing the speci c limitations
above, the biggest area for improvement involves increasing the
level of “reasoning” the system performs about the character mor-
phologies. Examples would be the aforementioned boundary rela-
tive mode and a movement mode that models concepts like “close
in” and “extended”. Animators will need to be able to express much
more complex and subtle semantics to the system before the anima-
tions will generalize in way that's competitive with a Maya anima-
tion on a single xed character. The gait system's biggest challenge

Figure 9: An example Animation Validation Grid. is how to provide believable locomotion with anticipation in the
face of discontinuous player and code inputs.
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