
Attention:

This material is copyright 1995-1997 Chris Hecker. All rights
reserved.

You have permission to read this article for your own education. You
do not have permission to put it on your website (but you may link
to my main page, below), or to put it in a book, or hand it out to your
class or your company, etc. If you have any questions about using
this article, send me email. If you got this article from a web page
that was not mine, please let me know about it.

Thank you, and I hope you enjoy the article,

Chris Hecker
definition six, incorporated
checker@d6.com
http://www.d6.com/users/checker

PS. The email address at the end of the article is incorrect. Please
use checker@d6.com for any correspondence.

B E H I N D T H E S C R E E N
Physics, Part 2:
Angular Effects
I
just want to block the door with
something heavy, so the bad guy
can’t get in. Is that too much to ask?
I want to flip over his car with a
carefully placed explosion, I want to
jam the huge gears to which I’m
strapped before they crush me, and
I want to rig up a seesaw-type thing

to catapult a nice flaming present over
his castle’s protective wall. You might
think that my antagonist is the one stop-
ping me from doing these things, but the
person stopping me is actually the pro-
grammer behind the game’s physics
engine, because at the heart of each of
these tasks lies an angular effect. Few
games today try even to model angular
effects, let alone try to get them right.

The main reason for the lack of
support for angular (you might call
14 GAME DEVELOPER • DECEMBER 1996/JANUARY 19

Eq. 1 Relationship of
position (r), velocity (v),
and acceleration (a)

Eq. 2 Force (F) equals the
derivative of linear
momentum (p), or
mass (m) times
acceleration

Eq. 3 Center of Mass (CM)

Eq. 4 Total linear momentum
equals the momentum
of CM

Eq. 5 Total force equals the
total mass (M) times
CM acceleration

 F
T = ṗT

pT =

i
∑

Mr CM =

F = ṗ =

d 2r
dt 2 =

Table 1. Important Equations fro
them rotational) effects in today’s
games is that programmers perceive
angular physics to be difficult to under-
stand and implement. High-school
physics courses (where we all learned
F=ma) usually don’t cover angular
effects, and it’s not immediately clear
how to translate a force applied to an
object into a spin for that object. While
the dynamics of angular motion are
slightly more difficult to understand
than the dynamics of linear motion,
they’re not that much more complicated.
Anybody who can implement a linear
physics engine based on the material we
covered in the last column will be able
to implement one that supports angular
effects based on the information in this
column. Hopefully, once this knowl-
edge is out there, we’ll start to see
97 http://www.gdmag.com

= Mv̇CM = MaCM

mi v i = d(MrCM)
dt

= MvCM

m i r i

i
∑

dp
dt

= d(mv)
dt

= mv̇ = ma

˙ṙ = dṙ
dt

= dv
dt

= v̇ = a

m Part 1 of This Series
games that take advantage of the
expressive power of angular effects, or
at the very least, let you shoot your
friend’s feet out from under her in a
deathmatch game.

Recap
Whenever I’m writing a series of
columns on a single topic, I always
reread my last column before starting the
latest one so I can figure out where I left
off. I just got finished doing that with
the first part of this series on physics,
and wow, we covered a lot of ground,
and without any code or references to
boot! Before we get started, let’s quickly
review the material from last time.

Table 1 contains the important
results for doing linear rigid body
dynamics. Eq. 1 shows that the position
vector (denoted by r), the velocity vector
(v), and the acceleration vector (a) are all
related by derivatives (and integrals in
the opposite direction). As a reminder,
we denote differentiation with respect to
time with a dotted vector, so “ ” is the
same as dr/dt, and “ ” is the same as the
second time derivative. Eq. 2 shows how
force is related to linear momentum
(mass times velocity), mass, and accelera-
tion. Eq. 3 gives the definition of the
center of mass, which is the point where
all the masses and distances balance each
other out. Eq. 4 says that the total linear
momentum for a rigid body is the sum of
all the momentums, which, luckily for us,
simply equals the momentum of the cen-
ter of mass (CM). Eq. 5 is the real gem;
it uses Eq. 4 to show that the accelera-
tion of our object’s CM is related to the
total force–the vector sum of all forces
currently acting on our object–by a sim-
ple scalar, the total mass of the object.

 ̇ṙ
 ̇r

To properly model

physics in your game,

you have to

understand rotational

effects. See how

angular momentum,

torque, and other

forces can be

modeled in a game.

Chris Hecker

So, to summarize the results from

the last column, we first find the total
force on our CM by summing all the
forces applied to the body (including
things like gravity, the bad guy’s tractor
beam, the nearby explosion, our engine
thrust, whatever). Then, we divide this
vector sum by the total mass to get the
CM acceleration, and then integrate that
acceleration over time (using the numer-
ical integration techniques mentioned at
the end of the last column) to get our
body’s new velocity and position.

Although Eq. 5 is a nice piece of
work, you’ll notice that it contains no
concept of where the forces act on the
body, which is the key to figuring out
how those forces rotate the body. Eq. 5
isn’t wrong—it’s exactly right for calcu-
lating the linear acceleration—we’re just
missing half the story. But let’s start at
the beginning…

What’s Your Angle?
The last column ignored rotation, so we
only needed the position vector and its
derivatives to describe our rigid body’s
configuration in 2D. We now need to

Figure 1. The Definition of Ω

xw

yw

xb

yb

xw

yw
Ω

add another kinematic quantity, orienta-
tion (denoted by Ω, capital omega), to
that configuration so we can support our
angular effects. To define Ω, we need to
pick a coordinate system fixed in our
rigid body and a fixed world coordinate
system, and specify Ω as the angular dif-
ference between them in radians, as
shown in Figure 1. In the figure, xw,yw

are the world axes, and xb,yb are the body
axes. Ω is positive in the counterclock-
wise direction. At this point, it should be
clear why we’re learning 2D dynamics
before moving up to 3D: The orienta-
tion in 2D is just a scalar (the angle
between the coordinate systems in radi-
ans), while specifying an orientation in
3D is much more complicated.

As our body rotates in the world,
Ω changes. This change leads us to our
next new kinematic quantity, angular
velocity (denoted by ω, lowercase
omega). In contrast with the position
and its linear velocity, we don’t usually
signify the angular velocity by “ .”
However, we sometimes signify the
velocity’s time derivative, or angular
acceleration—which is our final new
kinematic quantity—with “ ,” and
sometimes with an α (lowercase alpha).
Don’t blame me, I don’t make these
rules, and every book I read has a
sl ightly different convention. Our
angular analog to Eq. 1 is

(Eq. 6)
Much like Eq. 1, if we differentiate

ω with respect to time, we get α; and if
we integrate α over time, we get ω, and
so on. Clearly, as in our analytic integra-
tion example for linear movement in the
previous column, if we know the angular

d 2Ω
dt2 = dω

dt
= ω̇ = α

ω̇

Ω̇

GAME DEVELOPER • DECEMBER 1996/JANUARY 1997 15http://www.gdmag.com

B E H I N D T H E S C R E E N

Figure 2. C=Ωr

Ω r

B

C

O

acceleration α, we can integrate it twice
to find the new orientation; but the key
is we need to know α to do this.

As you might expect, our goal for
this column is to derive angular analogs
for each of the linear physics equations
in Table 1, and then link the linear and
angular equations together so we can
take a given force on our object and use
it to calculate the linear acceleration a,
and the angular acceleration α. Finally,
we can numerically integrate these accel-
erations to find our body’s new position
and orientation.

The first way we’ll link the linear
and angular quantities together is with a
neat and not-so-obvious trick using angu-
lar velocity. When we’re doing dynamics,
we often need to find the velocity of an
arbitrary point on our object. For exam-
ple, when we cover collision response,
we’ll need to know the velocity of the col-
liding points to figure out how hard they
hit each other. If our bodies aren’t rotat-
ing, the velocity of any point in the body
is the same; we can just keep track of the
velocity of the body’s CM and be done
with it. However, if our bodies are rotat-
ing, then every point in them might have
a different velocity. Obviously, we can’t
keep track of the velocity of each of the
infinity of points in our rigid body, so we
need a better way.

A simple way to find the linear
velocity of any point inside an object
uses that object’s angular velocity. Let’s
first cover the case of a body rotating
with one point, the origin O, fixed, so
the body is rotating but not translating.
Eq. 7 shows how to calculate the velocity
for a point B on this rotating body.
18 GAME DEVELOPER • DECEMBER 1996/JANUARY 199
(Eq. 7)

Eq. 7 introduces a bunch of new
notation, so let’s take it apart one piece
at a time. First, I’m using superscripts
to denote which parameters “belong” to
which points, so vB is the velocity of
point B in our body. Similarly, rOB

means the vector from the origin of our
body O to point B. The funny upside-
down T subscript is the “perpendicular
operator,” which takes a vector (like r in
Eq. 7) and rotates it counterclockwise
by 90 degrees. In other words, it creates
a new vector that’s perpendicular to the
old vector. In 2D, the perpendicular of
a vector (x,y) is just (-y, x), as you can
easily verify on a piece of graph paper.
I’ll say more on this operator shortly.
Finally, the perpendicular vector is
scaled by the angular velocity ω to give
the linear velocity vB. So, in English,
Eq. 7 says the velocity of a point on a
rotating body is calculated by scaling
the perpendicular vector from the origin
to the point by the angular velocity.
How in the heck did I come up with
this thing? Well, I read about it in a
book, but that’s obviously not very illu-
minating, so let’s prove for ourselves
that it works.

We’ll prove Eq. 7 does what I say it
does in two stages. First, we’ll prove that
the magnitude of the resulting velocity
vector is correct; then, we’ll prove it’s
pointing in the right direction. To prove
the first part, we’ll use Figure 2. Figure 2
shows our point B moving Ω radians
during the body’s rotation, with the
radius vector from the origin to B as r
units long. B has moved C units of
arclength on the circle, where C=Ωr by
the definition of radians. (Radian mea-
sure is the measure of arclength scaled by
the radius of the circle. The circumfer-
ence of a circle is the well-known formu-
la 2πr, because it’s 2π [or 360 degrees]
worth of arclength.)

A point’s speed is its change in
position over time. Thus, we can find B’s
speed—which is another way of saying
the magnitude of its velocity vector—by
differentiating the equation for its move-
ment with respect to time. C=Ωr is the
equation for its movement.

 v
B = ωr ⊥

OB
7 http://www.gdmag.com
(Eq. 8)
The radius drops out of the deriva-

tive because it’s constant (B is simply
rotating, not translating as well), and the
time derivative of Ω is ω by Eq. 6. Thus,
the magnitude of B’s velocity vector is ωr.

If we look at Eq. 7, we see that it
gets the magnitude correct because the
perpendicular operator clearly does not
effect a vector’s length, and rOB is the
radius vector from the origin to B. We’re
halfway done.

To show that the direction of the
velocity in Eq. 7 is correct, we’ll start by
convincing ourselves the velocity vector’s
direction must be perpendicular to the
radius vector. This assumption makes
sense intuitively, because a point rotating
around another fixed point can only move
perpendicularly to the vector between the
points at any instant; it can’t move closer
or farther away, or the movement
wouldn’t be a simple rotation. We could
make this assumption rigorous using a
tiny bit of vector calculus, but I’m running
out of space, so we’ll consider ourselves
convinced. (If you want to prove it to
yourself, try differentiating the dot prod-
uct of a fixed length vector with itself.)

Finally, we need to make sure the
sign of the velocity vector is correct,
since there are actually two vectors of the
same length that are perpendicular to the
radius: v and -v. Since we’re measuring
Ω in the counterclockwise direction, ω is
positive when the point is rotating coun-
terclockwise. The perpendicular operator

d (Ωr)
dt

= dΩ
dt

r = ωr

Figure 3. Linear Velocity
from Angular Velocity

ω rOB

B

O

vB=ωrOB

⊥

Figure 4. Angular Momentum

rAB

B

A

pB

θ φ
L

AB

= rAB

⊥ pB
points in the counterclockwise direction
relative to the radius vector. So, as Fig-
ure 3 shows, Eq. 7 checks out.

We can extend Eq. 7 to cover
simultaneously rotating and translating
bodies. We will consider any movement
of a rigid body as a simple translation of
a single point in the body and a simple
rotation of the rest of the body around
that point. This is known as Chasles’
Theorem, for those keeping score.

Chasles’ Theorem breaks up our
motion into linear and angular compo-
nents. We consider the origin O in Eq. 7
as the single translating point, then use ω
to keep track of the rotation around O,
which gives us the general form of Eq. 7.

(Eq. 9)
Eq. 9 says we can calculate the

velocity of any point in a moving body by
taking the known linear velocity of our
body’s origin and adding to it the velocity
generated from the body’s rotation.

A Moment-us Occasion
Now we’re in a position to work on the
angular analog of Eq. 2, the force equa-
tion. We’ll start by defining the angular
momentum, LAB, of one point, B, about
another point, A, as follows:

(Eq. 10)
The angular momentum of a point

differs from the linear momentum of a
point in that the angular version is mea-
sured from a specific position in space.
That is, while linear momentum is just a
property of a given point (its mass times
its velocity), the angular momentum of
the point must be measured from anoth-
er place in the world. The superscript
notation in Eq. 10 shows this. The nota-
tion LAB says that the first superscript, A,
is the point about which the momentum
is measured, and the second superscript,
B, is the point whose angular momen-
tum is being measured. Think about an
arrow from the first superscript to the
second; A is “looking at” B’s momen-
tum. This arrow from A to B is the
radius vector between the two points,
designated by rAB. So, the angular
momentum of a point is the dot product
of the “perpendicularized” radius vector

 L AB AB B= ◊^r p

 v
B = v O + ωr ⊥

OB
http://www
with the point’s linear momentum. This
operation is called the “perp-dot prod-
uct.” (It’s sort of the 2D analog to the
3D cross product, but that discussion
will have to wait for another time.)

If you take Eq. 10 and draw out
what it’s doing on a piece of paper—I’ve
drawn an example in Figure 4—you’ll
see it produces a number that’s a mea-
sure of how much of B’s linear momen-
tum is “rotating around” A. That is, if
B’s linear momentum is aiming right at
A or directly away from A, Eq. 10 is 0
(since r-perpendicular will form a right
angle with p, and the dot product will be
0). As more of B’s momentum is direct-
ed perpendicular to A, Eq. 10 produces a
larger angular momentum. As you can
see in Figure 4, the dot product in Eq.
10 is measuring the cosine of θ between
rAB-perpendicular and pB, which is what
you’d expect from a dot product. How-
ever, if we look at it another way, the
perp-dot product is measuring the sine
of φ between our original unperpendicu-
larized rAB and pB (the sine is another
clue to the similarity between the perp-
dot and the 3D cross product).
Whichever way we look at it, Eq. 10 is
producing a measure of how much of B’s
linear momentum is in the “rotating-
around direction” with respect to A.

In the same way we used the linear
momentum’s derivative to define force,
we’ll use the angular momentum’s deriv-
ative to define force’s angular twin,
torque (denoted by τ, lowercase tau).

t AB
AB AB B

AB B AB B

L

= =
◊()

= ◊ = ◊

^

^ ^

d
dt

d

dt
m

r

r a r F

p

(Eq. 11)
To save space, I actually cheated a bit

in Eq. 11 and left out a couple of tricky
steps involving the product rule for deriva-
tives. Still, when all is said and done, the
torque ends up being related to the force
at a specific point by the perp-dot product.

At last, we find a dynamics equation
that uses the point where a force was
applied, which is ignored in the equa-
tions for linear movement. Eq. 11 uses
the perp-dot product to measure how
much of the force applied at point B is
GAME DE.gdmag.com
“rotating around” point A; that “rotating-
around force” is called the torque. Eq. 11
lets us calculate the torque—and hence
the angular momentum, if we integrate
that torque—from an applied force and
its position of application.

However, we still don’t have any
relationship between the torque and the
kinematic angular quantities we need to
spin our object around—such as the angu-
lar acceleration, angular velocity, or orien-
tation; so we can’t really do anything with
our newfound dynamic quantities until
we’ve derived a few more equations.

The Moment We’ve All Been
Waiting For
Before we can examine the relationship
between the dynamic and kinematic
quantities, we need to define the total
angular momentum, much as we have
defined the total linear momentum in Eq.
4. I didn’t forget the angular equivalent of
the CM in Eq. 3; it will come to us in the
total angular momentum equation.

The total angular momentum about
point A is denoted LAT and is defined by
Eq. 12.

(Eq. 12)
Eq. 12 is a summation of all the

angular momentums of all the points, as
measured from point A. On the right-
hand side, I’ve used the definition of linear
momentum to expand p into mass times
velocity (mv) because we’re going to
manipulate this term to turn Eq. 12 into
something more manageable. As it stands,

L

A A

i

A

i

T i i

i i im

= ◊

= ◊

^

^

Â

Â

r p

r v
VELOPER • DECEMBER 1996/JANUARY 1997 19

B E H I N D T H E S C R E E N
if we want to calculate the total angular
momentum for our object, we’d have to
sum all of the angular momentums for
each of the points. For a rigid body com-
posed of surfaces rather than separate
points, we’d have to perform an integra-
tion instead of a discrete summation.

Luckily, we can simplify this calcu-
lation by introducing a new quantity,
called the moment of inertia, in the same
way we introduced the CM to simplify
the equations for linear movement. We
start by remembering that Eq. 7 gives us
an alternate way of writing the velocity
of a point in terms of the angular veloci-
ty. If we treat the point A in Eq. 12 as
the origin in Eq. 7, and the point index i
in Eq. 12 as the point B in Eq. 7, we can
substitute Eq. 7 into Eq. 12 and write

(Eq. 13)

L

 () I

A A A

i
A

i

A

A

i

2 A

T i i i

i i i

i i

m

m

m

= ◊

= ◊

= =

^ ^

^ ^

^

Â
Â
Â

r r

r r

r

w

w

w w
20 GAME DEVELOPER • DECEMBER 1996/JANUARY 199
I’ll describe Eq. 13 one step at a
time. First, we substitute Eq. 7 into Eq.
12 to get the first summation in Eq. 13.
This substitution lets us write the angu-
lar momentum in terms of the angular
velocity. Next, we bring the ω out of the
summation because it’s the same for all
the points (the angular velocity is
defined for the body, not the points
individually), and we write the mass for
point i on the left-hand side so we can
see that we’re really taking the dot prod-
uct of the radius vector with itself. This
dot product is just the radius vector’s
length squared. (The dot product of any
vector with itself is the length squared;
remember the perpendicular operator
doesn’t change a vector’s length.) Finally,
we write the letter IA to designate the
moment of inertia about point A. The
moment of inertia for a 2D rigid body is
a particularly nice number, because the
points that make up the body can't
change their mass or their distance from
the measurement point. These two
properties make the summation in Eq.
7 http://www.gdmag.com
13 constant for each body, so we can cal-
culate it offline before we begin. To
rephrase in English, IA is the sum of the
squared distances from point A to each
other point in the body, and each
squared distance is scaled by the mass of
each point. Much like the CM, if the
body is continuous rather than made
from discrete points, the summations
above would turn into integrals. Howev-
er, the moment of inertia would still
exist and be defined the same way.

The definition of the moment of
inertia about a point is a mouthful, but
think of IA as a measure of how hard it is
to rotate the body about point A. For
example, think about a pencil (a 2D pen-
cil). If we measure the moment of inertia
about the middle of the pencil, we get a
certain value by summing the mass-scaled
squared distances. However, if we mea-
sure the inertia about the tip of the same
pencil, we get a much larger value,
because the squared term in Eq. 13 makes
the masses that are farther away (toward
the eraser of our pencil) contribute much

more to the value. This is saying mathe-
matically what we all know intuitively:
Turning a pencil about its center is a lot
easier (read: takes less force) than turning
it about one of its ends.

Finally, we’re ready to provide a use-
ful link between the angular dynamics
equations and the angular kinematics
equations. If we differentiate Eq. 13, we
get the total torque on the left side, and on
the right side we get the moment of iner-
tia times the angular acceleration. (IA is
constant so it drops out of the derivative.)

(Eq. 14)

This equation is the angular equiva-
lent of Eq. 5; it’s basically F=ma for
angular dynamics. It relates the total
torque and the body’s angular accelera-
tion through the scalar moment of iner-
tia. If we know the torque on our body,
we can find its angular acceleration—and
therefore, the angular velocity and orien-

t w

w a

A
A A

A A

L (I)

 I I

T
Td

dt
d

dt
= =

= =˙
http://www
tation via integration—by dividing the
torque by the moment of inertia.

The Dynamics Algorithm
We may not recognize it through the
flurry of equations, but that’s all of it.
We’ve developed enough equations to do
great 2D dynamics with arbitrary forces
and torques moving and spinning our
objects around. How do we use all these
equations? Here’s the basic algorithm:

1. Calculate the CM and the
moment of inertia at the CM.

2. Set the body’s initial position,
orientation, and linear and angular
velocities.

3. Figure out all of the forces on
the body, including their points of
application.

4. Sum all the forces and divide by
the total mass to find the CM’s linear
acceleration (Eq. 5).

5. For each force, form the perp-
dot product from the CM to the point of
force application and add the value into
the total torque at the CM (Eq. 11).
GAME DE.gdmag.com
6. Divide the total torque by the
moment of inertia at the CM to find the
angular acceleration (Eq. 14).

7. Numerically integrate the linear
acceleration and angular acceleration to
update the position, linear velocity, ori-
entation, and angular velocity (see last
issue).

8. Draw the object in the new posi-
tion, and go to Step 3.

There are only two steps in the
above algorithm that I haven’t yet
explained. First, how does one calculate
the moment of inertia in Step 1 for a
continuous object? Second, how do you
figure out the forces on an object for
Step 3? The answer to the first question
can be found in the sample program ref-
erenced at the end of this article (you
perform an integration over the surface
of the object). Most dynamics books
have the moments of inertia for common
shapes listed in the back, so you don’t
usually have to derive them from scratch.

The answer to how to compute the
forces in Step 3 depends on the applica-
VELOPER • DECEMBER 1996/JANUARY 1997 21

B E H I N D T H E S C R E E N

I
got a great e-mail from Jan Vondrak
(JVON4518@barbora.mff.cuni.cz)
the other day. Jan pointed out,
much to my chagrin, that the final
assembly code for the texture-

mapping series had a big performance
flaw in it (in addition to the ones I list
at the top of the file): Very soon after
issuing the

fdiv that ostensibly over-
laps with the rasterization loop, I issue
an imul. Well, on the Pentium, imul
uses the floating point unit, so it's
going to stall on the fdiv, and I won't
overlap. Oops! I was so rushed just
getting the code working that I didn't
notice this bug. I moved the fdiv
below the imuls and got a speedup,
and as the comment in the file says,
that code is fertile ground for opti-
mization. Thanks to Jan for pointing
this out!

O O P S !
tion, but a few general guidelines apply.
First, forces like gravity that always point
in the same direction (down, in gravity’s
case) don’t induce torques on an object
since they pull on all points at the same
time and in the same direction; thus, we
just apply those forces directly to the
CM. A spring-like force applied to a
specific point on an object will induce
torques, so we handle it normally. As we
saw in the last issue, drag is just a force
directed in the opposite direction of your
22 GAME DEVELOPER • DECEMBER 1996/JANUARY 19
velocity. You could do a simple drag
model and just apply the force to the
CM, or you could figure out which parts
of your object would have drag and apply
specific drag forces to those parts, which
might induce torque on your object. The
forces experienced during a collision are
slightly more complicated, and will have
to wait until the next column. Forces
from rocket engines would probably be
treated as forces with a point of applica-
tion. (That way, if one of your engines
97 http://www.gdmag.com
fails, you’ll start to spin unless you adjust
your rudder to provide another force to
counteract the torque!) If you have
something like a tractor-beam, should it
act like gravity and be torque-free, or
should it be applied at a specific point on
the object so the object turns toward the
beam as it’s pulled? You’ll have to decide
that. The key is not to be afraid of
experimenting with different forces cal-
culated in different ways—now that
you’ve got a real 2D dynamics simulator,
you can try all sorts of forces.

I’ve placed a bunch of references
and some code on my Web site because
there’s no more room left here. The
sample app implements the 2D dynam-
ics algorithm on some objects attached
by a spring; they spin and move around,
and even collide with walls with rota-
tions, which we’ll cover next time. Check
out http://ourworld.compuserve.com/
homepages/checker for a list of refer-
ences and the sample application for
Win32 and Macintosh. ■

Every once in a while, Chris Hecker
experiences a moment of inertia, but it usu-
ally passes pretty quickly. Forces may be
applied at checker@bix.com.

Please use checker@d6.com.

