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W
hen I sat down to write
this article, it was supposed
to be the last installment in
our epic perspective texture
mapping series. Part of the
way through, I realized I
needed to cover what
ended up as the actual topic

of this article—floating-point optimiza-
tions—to complete the optimizations on
the perspective texture mapper’s inner
loop. So we’ll learn some generally cool
tricks today and apply them to the tex-
ture mapper in the next issue. In fact,
these techniques are applicable to any
high-performance application that mixes
floating-point and integer math on mod-
ern processors. Of course, that’s a long
and drawn-out way of saying the tech-
niques are eminently suitable to cool
games, whether they texture map or not.

The Real Story
A few years ago, you couldn’t have
described a game as an “application that
mixes floating-point and integer math,”
because no games used floating-point. In
fact, floating-point has been synonymous
with slowness since the beginning of the
personal computer, when you had to go
out to the store, buy a floating-point
coprocessor, and stick it into a socket in
your motherboard by hand. It’s not that
game developers didn’t want to use real
arithmetic, but the original PCs had
enough trouble with integer math, let
alone dealing with the added complexi-
ties of floating-point. 

We don’t have enough space to
cover much of the history behind the
transition from integer math, through
rational (Bresenham’s line-drawing

algorithm, for example) and fixed-point
arithmetic, and finally to floating-point,
but here’s the quick summary: For a
long time, game developers only used
floating-point math in prototype algo-
rithms written in high-level languages.
Once prototyped, the programmers usu-
ally dropped the code down into fixed-
point for speed. These days, as we’ll see,
floating-point math has caught up with
integer and fixed-point in terms of
speed and in some ways has even sur-
passed it.

To see why, let’s look at the cycle
timings of the most common mathe-
matical operations used by game devel-
opers (addition, subtraction, multiplica-
tion, and—hopefully relatively rarely—
division) for fixed-point, integer, and
floating-point. Table 1 shows the cycles
times on three generations of Intel
processors, the PowerPC 604, and a
modern MIPS. We see that the float-
ing-point operations, with the exception
of additions and subtractions, are actual-
ly faster than their integer counterparts
on the modern processors (the 386, a
decidedly nonmodern processor without
an integrated floating-point unit, lags
far behind, and the transitional 486 has
mixed results).

Of course, these numbers alone
don’t tell the whole story. The table
doesn’t show that, although the cycle
times are still slow compared to single-
cycle instructions like integer addition,
you can usually execute other integer
instructions while the longer floating-
point operations are running. The
amount of cycle overlap varies from
processor to processor, but on really
long instructions, like floating-point
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division, you can usually overlap all but a
few cycles with other integer (and some-
times even floating-point) instructions.
In contrast, the longer integer instruc-
tions allow no overlap on the current
Intel processors and limited overlap on
the other processors.

On the other hand, the floating-
point operations are not quite as fast as
Table 1 implies because you have to load
the operands into the floating-point unit
to operate on them, and floating-point
loads and stores are usually slower than
their integer counterparts. Worse yet,
the instructions to convert floating-point
numbers to integers are even slower still.
In fact, the overhead of loading, storing,
and converting floating-point numbers is
enough to bias the speed advantage
towards fixed-point on the 486, even
though the floating-point instruction
timings for the actual mathematical
operations are faster than the corre-
sponding integer operations.

Today, however, the decreased
cycle counts combined with the tricks
and techniques we’ll cover in this article
give floating-point math the definite
speed advantage for some operations,
and the combination of floating-point
and fixed-point math is unbeatable.

If It Ain’t Float, Don’t Fix It
As usual, I’m going to have to assume you
know how fixed-point numbers work for
this discussion. Mathematically speaking,
a fixed-point number is an integer created
by multiplying a real number by a con-
stant positive integer scale and removing
the remaining fractional part. This scale
creates an integer that has a portion of the
original real number’s fraction encoded in
its least significant bits. This is why fixed-
point was the real number system of

choice for so many years; as long as we’re
consistent with our scales, we can use fast
integer operations and it just works, with
a few caveats. It has big problems with
range and is a mess to deal with, for the
most part. You need to be very careful to
avoid overflow and underflow with fixed-
point numbers, and those “fast” integer
operations aren’t as fast as the same float-
ing-point operations anymore.

Floating-point math, on the other
hand, is a breeze to work with. The main
idea behind floating-point is to trade
some bits of precision for a lot of range. 

For the moment, let’s forget about
floating-point numbers and imagine we
have really huge binary fixed-point num-
bers, with lots of bits on the integer and
fractional sides of our binary point. Say
we have 1,000 bits on each side, so we
can represent numbers as large as 21000

and as small as 21000. This hypothetical
fixed-point format has a huge range and
a lot of precision, where range is defined
as the ratio between the largest and the
smallest representable number, and pre-
cision is defined as how many significant
digits (or bits) the representation has.
So, for example, when we’re dealing with
incredibly huge numbers in our galaxy
simulator, we can still keep the celestial
distances accurate to within subatomic
particle radii.

However, most applications don’t
need anywhere near that much precision.
Many applications need the range to rep-
resent huge values like distances between
stars or tiny values like the distance
between atoms, but they don’t often need
to represent values from one scale when
dealing with values of the other.

Floating-point numbers take
advantage of this discrepency between
precision and range to store numbers

with a very large range (even greater
than our hypothetical 2,000-bit fixed-
point number, in fact) in very few bits.
They do this by storing the real number’s
exponent separately from its mantissa,
just like scientific notation. In scientific
notation, a number like 2.345 x 1035 has
a mantissa of 2.345 and an exponent of
35 (sometimes you’ll see the terms sig-
nificand and characteristic instead of
mantissa and exponent, but they’re syn-
onymous). This number is only precise
to four significant digits, but its expo-
nent is quite big (imagine moving the
decimal point 35 places to the right and
adding zeros after the mantissa runs out
of significant digits).

The way the precision scales with
the magnitude of the value is the other
important thing. When the exponent is
35, incrementing the first digit changes
the value by 1035, but when the exponent
is 0, incrementing the first digit only
changes the value by 1. This way you get
angstrom accuracy when you’re on the
scale of angstroms, but not when you’re
on the scale of galaxies (when you really
don’t need it).

The IEEE floating-point standard
specifies floating-point representations
and how operations on those representa-
tions behave. The two IEEE floating-
point formats we care about are “single”
and “double” precision. They both share
the same equation for conversion from
the binary floating-point representation
to the real number representation, and
you’ll recognize it as a binary form of sci-
entific notation:

–1sign x2exponent–bias x1.mantissa (1)

The only differences between the two
formats are the widths of some of the
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Integer Float Integer Float Integer Float
Add/Subtract Add/Subtract Multiply Multiply Divide Divide

Intel 386/387 2 23-34 9-38 27-35 43 89
Intel i486 1 10 12-42 11 43 62 (35)
Intel Pentium 1 3 10 3 46 33 (19)
PowerPC 604 1 3 4 3 20 31 (18)
MIPS R4x00 1 4 10 8 (7) 69 36 (23)

Table 1.  Various Instruction Timings (Parentheses Indicate Single Precision)



named fields in Equation 1, so we’ll go
over each part of it in turn and point out
the differences when they pop up.

We’ll start on the right-hand side
of Equation 1. The mantissa expression
(the 1.mantissa part of the equation) is
somewhat strange when you first look at
it, but it becomes a little clearer when
you realize that mantissa is a binary
number. It’s also important to realize
that it is a normalized, binary number.
“Normalized” for scientific numbers
means the mantissa is always greater

than or equal to 1 and less than 10 (in
other words, a single, non-zero digit).
Our previous example of scientific nota-
tion, 2.345 x 1035, is normalized, while
the same number represented as 234,500
x 1030 is not. When a binary number is
normalized, it is shifted until the most
significant bit is 1. Think about this for a
second (I had to). If there are leading
zeros in the binary number, we can rep-
resent them as part of the exponent, just
as if there are leading 0 digits in our dec-
imal scientific notation. And because the
most significant bit is always 1, we can
avoid storing it altogether and make it
implicit in our representation. So, just
like normalized decimal scientific nota-
tion keeps its mantissa between 1 and
10, the binary mantissa in a floating-
point number is always greater than or
equal to 1 and less than 2 (if we include
the implicit leading 1).

Next in line, the exponent expres-
sion shifts the binary point right or left

based on a positive or negative exponent,
respectively. This is exactly analogous to
the base-10 decimal scientific notation,
where the exponent shifts the decimal
point right or left, inserting zeros as nec-
essary. The exponent field is the key to
the range advantage floating-point num-
bers have over fixed-point numbers of
the same bit width. While a fixed-point
number has an implicit binary point and
all the bits are, in essence, a mantissa, a
floating-point number reserves an expo-
nent field to shift the binary point

around (hence the term, “floating-
point”). It’s clear that 8 bits reserved for
an exponent from a 32-bit word allows a
range from about 2127 to 2-127, while the
best a fixed-point number could do
would be a 32-bit range, for example 232

to 0, 216 to 2-16, or 0 to 2-32, but not all
at the same time. However, there’s no
such thing as a free lunch; the 32-bit
fixed-point number actually has better
precision than the floating-point num-
ber, because the fixed-point number has
32 significant bits, while the floating-
point number only has 24 significant bits
left after the exponent is reserved.

You’ll notice the exponent expres-
sion is actually exponent - bias. The bias
is a value set so that the actual bits of the
exponent field are always positive. In
other words, assuming the exponent is 8
bits and the bias is 127, if you want your
unbiased exponent to be -126 you set
your biased exponent bits to 1. Likewise,
a biased exponent field value of 254

yields an unbiased exponent of 127.
Exponent values of all 0s and all 1s are
reserved for special numerical situations,
like infinity and zero, but we don’t have
space to cover them.

Finally, the sign bit dictates
whether the number is positive or nega-
tive. Unlike two’s complement represen-
tations, floating-point numbers that dif-
fer only in sign also differ only in their
sign bit. We’ll discuss the implications of
this further. Table 2 contains the field
sizes for single and double precision

IEEE floating-point values, and Figure
1 shows their layout, with the sign
always at the most significant bit.

An Example
Let’s run through an example by con-
verting a decimal number into a single
precision, binary, floating-point number.
We’ll use the number 8.75 because it’s
easy enough to do by hand, but it still
shows the important points. First, we
turn it into a binary fixed-point number,
1000.11, by figuring out which binary
bit positions are 1 and 0. Remember, the
bit positions to the right of the binary
point go 2-1, 2-2, 2-3, and so on. It
should be clear that I chose .75 for the
fractional part because it’s 2-1 + 2-2, so
it’s easy to calculate. Next, we shift the
binary point three positions to the left to
normalize the number, giving us 1.00011
x 23. Finally, we bias this exponent by
adding 127 for the single precision case,
leaving us with 130 (or 10000010 bina-
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Figure 1.  IEEE Floating-Point Layouts
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ry) for our biased exponent and 1.00011
for our mantissa. The leading 1 is
implicit, as we’ve already discussed, and
our number is positive, so the sign bit is
0. The final floating-point number’s bit
representation is shown in Figure 2. 

Now that we’re familiar with float-
ing-point numbers and their representa-
tions, let’s learn some tricks.

Conversions
I mentioned that on some processors
the floating-point to integer conver-
sions are pretty slow, and I wasn’t exag-
gerating. On the Pentium, the instruc-
tion to store a float as an int, FIST, takes
six cycles. Compare that to a multiply,
which only takes three, and you see
what I mean. Worse yet, the FIST
instruction stalls the floating-point
pipeline and both integer pipelines, so
no other instructions can execute until
the store is finished. However, there is
an alternative, if we put some of the
floating-point knowledge we’ve learned
to use and build our own version of FIST
using a normal floating-point addition.

In order to add two floating-point
numbers together, the CPU needs to
line up the binary points before doing
the operation; it can’t add the mantissas
together until they’re the same magni-
tude. This “lining up” basically amounts
to a left shift of the smaller number’s
binary point by the difference in the two
exponents. For example, if we want to
add 2.345 x 1035 to 1.0 x 1032 in decimal
scientific notation, we shift the smaller
value’s decimal point 3 places to the left
until the numbers are the same magni-
tude, and do the calculation:  2.345 x
1035 + 0.001 x 1035 = 2.346 x 1035. Bina-
ry floating-point works in the same way.

We can take advantage of this
alignment shift to change the bit repre-
sentation of a floating-point number

until it’s the same as an integer’s bit
representation, and then we can just
read it like a normal integer. The key to
understanding this is to realize that the
integer value we want is actually in the
floating-point bits, but it’s been nor-
malized, so it’s shifted up to its leading
1 bit in the mantissa field. Take 8.75, as
shown in Figure 2. The integer 8 part is
the implicit 1 bit and the three leading
0s in the mantissa. The following 11 in
the mantissa is .75 in binary fractional
bits, just waiting to be turned into a
fixed-point number.

Imagine what happens when we
add a power-of-two floating-point
number, like 28=256, to 8.75, as in Fig-

ure 3. In order to add the numbers, the
CPU shifts the 8.75 binary point left by
the difference in the exponents (8 - 3 =
5, in this example), and then completes
the addition. The addition itself takes
the implicit 1 bit in the 256 value and
adds it to the newly aligned 8.75, and
when the result is normalized again the
implicit 1 from the 256 is still in the
implicit 1-bit place, so the 8.75 stays
shifted down. You can see it in the
middle of the mantissa of the result in
Figure 3. What happens if we add in
223, or the width of the mantissa? As
you’d expect, the 8.75 mantissa is shift-
ed down by 23 - 3 = 20, leaving just the
1,000 for the 8 (because we shifted .75
off the end of the single precision man-
tissa, the rounding mode will come into

play, but let’s assume we’re truncating
towards zero). If we read in the result-
ing single precision value as an integer
and mask off the exponent and sign bit,
we get the original 8.75 floating-point
value converted to an integer 8!

This trick works for positive num-
bers, but if you try to convert a negative
number it will fail. You can see why by
doing the aligned operation by hand. I
find it easier to work by subtracting two
positive numbers than by adding a posi-
tive and a negative. Instead of 223 + (-
8.75), I think of 223 - 8.75. The single
sign bit representation lends itself to
this as well (using a piece of paper and a
pen will really help you see this in
action). So, when we do the aligned
subtraction, the 8.75 subtracts from the
large value’s mantissa, and since that’s
all 0s (it’s a power-of-two), the subtract
borrows from the implicit 1 bit. This
seems fine at first, and the mantissa is
the correct value of -8.75 (shifted
down), but the normalization step
screws it up because now that we’ve

borrowed from the implicit 1 bit, it’s no
longer the most significant bit, so the
normalization shifts everything up by
one and ruins our integer.

But wait, all is not lost. All we
need is a single bit from which to bor-
row in the mantissa field of the big
number so that the subtraction will
leave the implicit 1 bit alone and our
number will stay shifted. We can get
this 1 bit simply by multiplying our
large number by 1.5. 1.5 in binary is
1.1, and the first 1 becomes the implic-
it 1 bit, and the second becomes the
most significant bit of the mantissa,
ready to be used for borrowing. Now
negative and positive numbers will stay
shifted after their normalization. The
masking for negative numbers amounts
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Figure 2.  8.75 As a IEEE Single Precision Value
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Total Bias
Width Sign Mantissa Exponent Value

Single 32 bits 1 bit 23 bits 8 bits +127
Double 64 bits 1 bit 52 bits 11 bits +1023

Table 2.  Floating-Point Field Widths and Parameters



to filling in the top bits with 1 to com-
plete the two’s-complement integer
representation.

The need to mask for positive and
negative values is bad enough when you
are only dealing with one or the other,
but if you want to transparently deal
with either, figuring out how to mask
the upper bits can be slow. However,
there’s a trick for this as well. If you
subtract the integer representation of
our large, floating-point shift number
(in other words, treat its bits like an
integer instead of a float) from the inte-
ger representation of the number we
just converted, it will remove all the
high bits properly for both types of
numbers, making the bits equal zero for
positive values and filling them in with
ones for negative values.

You’ll notice that this technique
applied to single precision values can
only use a portion of the full 32 bits
because the exponent and sign bits are
in the way. Also, when we use the 1.5
trick we lose another bit to ensure both
positive and negative numbers work.
However, we can avoid the range prob-
lems and avoid masking as well by using
a double precision number as our con-
version temporary. If we add our num-
ber as a double (making sure we use the
bigger shift value—252 x 1.5 for integer

truncation) and only read in the least
significant 32 bits as an integer, we get
a full 32 bits of precision and we don’t
need to mask, because the exponent and
sign bits are way up in the second 32
bits of the double precision value.

In summary, we can control the shift
amount by using the exponent of a large
number added to the value we want to
convert. We can shift all the way down to
integer truncation, or we can shift part of
the way down and preserve some frac-
tional precision in fixed-point.

This seems like a lot of trouble,
but on some processors with slow con-
version functions, like the x86 family, it
can make a difference. On the Pentium
with FIST you have to wait for six cycles
before you can execute any other
instructions. But using the addition
trick, you can insert three cycles worth
of integer instructions between the add
and the store. You can also control how
many bits of fractional precision you
keep, instead of always converting to an
integer.

What’s Your Sign?
Before I wrap this up, I’d like to throw
out some other techniques to get you
thinking.

The exponent bias is there for a rea-
son: comparing. Because the exponents

are always positive (and are in more sig-
nificant bits than the mantissa), large
numbers compare greater than small
numbers even when the floating-point
values are compared as normal integer
bits. The sign bit throws a monkey
wrench in this, but it works great for sin-
gle-signed values. Of course, you can take
the absolute value of a floating-point
number by masking off the sign bit.

I’ve already hinted at the coolest
trick—overlapping integer instructions
while doing lengthy divides—but I
haven’t gone into detail on it. It will
have to wait until next time, when we’ll
discuss this in depth.

Two people introduced me to the
various tricks in this article and got me
interested in the details of floating-
point arithmetic. Terje Mathisen at
Norsk Hydro first showed me the con-
version trick, and Sean Barrett from
Looking Glass Technologies made it
work on negative numbers.

If you want to learn more about
floating-point, The Art of Computer Pro-
gramming, Vol. 2: Seminumerical Algo-
rithms (Addison-Wesley, 1981) by D.
Knuth is a good source for the theory.
Most CPU programming manuals have
fairly detailed descriptions as well. You
can get Adobe Portable Document For-
mat versions of the PowerPC manuals on
http://www.mot.com. If you really want
to understand floating-point and its
implications for numerical programming,
you’ll want to pick up a numerical analysis
textbook that deals with computers. 

You also might want to look at the
Graphics Gems series from AP Profes-
sional. The series covers a number of
floating-point tricks like the ones dis-
cussed here. A good example calculates a
quick and dirty square root by halving
the exponent and looking up the first
few bits of the mantissa in a table.
Another takes advantage of the format
to do quick absolute values and compares
for clipping outcode generation. Once
you understand the floating-point for-
mat, you can come up with all sorts of
tricks of your own.   ■

Chris Hecker tries to stay normalized,
but he can be biased at checker@bix.com.

B E H I N D  T H E  S C R E E N

24 GAME DEVELOPER • FEBRUARY/MARCH 1996

Figure 3.  Adding Single Precision Floating-Point Numbers
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