
Attention:

This material is copyright  1995-1997 Chris Hecker. All rights
reserved.

You have permission to read this article for your own education. You
do not have permission to put it on your website (but you may link
to my main page, below), or to put it in a book, or hand it out to your
class or your company, etc. If you have any questions about using
this article, send me email. If you got this article from a web page
that was not mine, please let me know about it.

Thank you, and I hope you enjoy the article,

Chris Hecker
definition six, incorporated
checker@d6.com
http://www.d6.com/users/checker

PS. The email address at the end of the article is incorrect. Please
use checker@d6.com for any correspondence.

PowerPC
Compilers:
Still Not So Hot

B E H I N D T H E S C R E E N

50.9�

82.8�

39.5�

56.2�

42.8

KAPed 1�
(not shown)

34.3�

50.9�

33.2�

36.1�

31.9

Listing�
4

29.7�

31.9�

30.8�

28.8�

21.9

Listing�
5

19.6�

25.7�

20.6�

19.5�

22.7

Listing�
6

I
believe it was Theodore Roosevelt
who first called the presidency of the
United States a “bully pulpit,” which
is a catchy way of saying that the
president can rant on a subject, peo-
ple will actually listen, and maybe
those people will even do something
about whatever the topic of the rant

happens to be. Magazine columns can be
bully pulpits as well, and, while a comput-
er magazine column is clearly not a pulpit
on the same level as the White House, I
don’t expect to hear Bill Clinton taking
compiler vendors to task about lame opti-
mization quality in the next State of the
Union Address, so I might as well do it
myself.

Review Problems
This article started out as a comparative
review of compiler optimizations, but the
more I learned about the various compil-
ers and how they did or did not optimize,

Table 1. Transform Cycle Counts

CodeWarrior�

Symantec C++�

Motorola C++�

Apple’s MrCpp�

Microsoft VC++

40.7�

76.6�

34.5�

52.0�

41.6

Compiler
Listing�

1

50.5�

94.9�

47.4�

65.0�

49.3

Listing�
2

12 GAME DEVELOPER • JUNE/JULY 1996
the more the article turned into an explo-
ration of how we as programmers have to
help the compilers do a good job with our
code. So while I’m still going to talk
about five compilers and give comparison
charts like a normal review, I’m actually
going to concentrate on how our source
code changes affect the assembly the
compiler generates.

Most other compiler reviews focus
on the compiler’s integrated development
environment, on the fancy editor with
color syntax highlighting that doesn’t even
let you write a simple macro, on the
debugger’s silly ToolTip windows (that
pop up over variable names with their val-
ues if you hold your mouse there forever),
and on the compiler supplied class library
that violates just about every precept of
good object-oriented design in C++ and is
bloated and slow to boot. Wow! As you
can see, I’m no fan of compiler reviews—I
believe most are written by either nonpro-
http://www.gdmag.com
grammers or nonproduction programmers
writing toy programs. Compilers them-
selves are written for those reviewers, and
so we end up with the current mess,
where compiler vendors focus on silly new
features to please silly reviewers instead of
focusing on things that actually help pro-
duction programmers do their jobs well.

When I evaluate a compiler I look
for two things: C++ compliance and code
optimization. The former is basically a
lost cause at this point because the C++
draft standard is still a moving target and
there’s no solid conformance suite. I pray
this will change soon. By contrast, com-
piler writers have had years to work on
compiler optimizations, and not much
has changed since the early days.

By focusing on optimizations, we’ll
not only learn which compilers optimize
the best, we’ll also learn what we can do
to help a compiler do its best with our
code. This time, we’ll be covering compil-
ers for the PowerPC chip on the Macin-
tosh, and next time we’ll cover the Intel
x86. Even if you don’t program for the
PowerPC, reading this will help you learn
a lot about compilers and how they opti-
mize, and that knowledge will carry across
to whatever CPU you care to program.

The compilers we’ll cover this issue
are: Metrowerks CodeWarrior 8, Syman-
tec C++ 8, version 1.0f3e2 of Apple’s
MrCpp compiler (which is included with
the Symantec compiler), Motorola’s 2.1.1
PowerPC C++ compiler, and the
Microsoft Visual C++ for Macintosh 4.0
cross compiler.

The Test Code
We’ll use a simple inner product of a
three-by-three matrix and a three ele-
ment column vector to evaluate each

Compilers. What are

they good for? Chris

Hecker steps to the

bully pulpit to rant

about the state of

current PowerPC

compilers. Sadly, these

days, most compilers

need a lot of help

Chris Hecker

Listing 1. The Test Function

void TransformVectors(float *pDestVectors,

float const (*pMatrix)[3], float const *pSourceVectors,
int NumberOfVectors)

{
int Counter, i, j;
for(Counter = 0;Counter < NumberOfVectors;Counter++) {

for(i = 0;i < 3;i++) {
float Value = 0;
for(j = 0;j < 3;j++) {

Value += pMatrix[i][j] * pSourceVectors[j];
}
*pDestVectors++ = Value;

}
pSourceVectors += 3;

}
}

compiler’s optimization quality. Obvi-
ously, a single function is not going to
tell the whole optimization story, but it
should give us an idea of what sorts of
optimizations we can expect from today’s
compilers.

Listing 1 shows the function Trans-
formVectors. I made it transform an array
of vectors so the compilers would have to
work a bit harder, but, even so, the code is
trivial. I used 1,000 calls to this function
with 500 transforms on each call to gather
timing information. The first column of
data in Table 1 shows the approximate
cycle counts for each product measured
with the MacOS call Microseconds for the
various compilers on my Power Comput-
ing 604. I turned on all the optimizations
I could find on each compiler to gather
this data. I made sure my test program
was producing correct results on every
compiler by making the source vectors
eigenvectors of the transform matrix and
checking to see if the transformed vector
was the same as the source—it’s always a
good idea to make sure neither you nor
the compiler has introduced any bugs
while optimizing.

Anti-Alias
If you’ve looked ahead at the other
results in Table 1 and the other listings,
you’re probably wondering what the sec-
ond column of data means, and why
Listing 2 is almost identical to Listing 1.
Even though you and I know we
wouldn’t call TransformVectors from List-
ing 1 with the source or destination
pointing to the same vector, or, worse
yet, with the destination pointing into
the middle of the matrix somewhere, the
compiler doesn’t know this, so it can’t
assume we didn’t do something silly.
When a variable points to another live
variable in the function, it’s called
“pointer aliasing,” and when the compil-
er sees a write through a pointer, it needs
to assume that the data could have land-
ed anywhere, including into variables it’s
already loaded into registers. This means
GAME DEVELOPER • JUNE/JULY 1996 13http://www.gdmag.com

optimizing code.

B E H I N D T H E S C R E E N

Listing 2. The Non-Aliasing Test Function
the optimizer has to continually reload
variables into registers in case we’re alias-
ing parameters, so I wrote Transform-
Vectors2 in Listing 2 to give the compil-
ers some help. Since aTemp is defined
local to our function, the compiler
knows it can’t be aliased, so writes to
aTemp shouldn’t cause spurious register
reloads.

Well, at least that’s what I thought,
anyway. As you can see from the tim-
ings, all the compilers got slower because
14 GAME DEVELOPER • JUNE/JULY 1996

Listing 3. Motorola C++ Assembly for
not only did they still reload all the reg-
isters, they also naively implemented the
copy loop at the end of Listing 2!

Let’s look at the code generated by
the winner of this round, the Motorola
C++ compiler. Listing 3 shows the
PowerPC assembly language generated
for TransformVectors2, our supposedly
non-aliased function. Despite some odd
ways of moving values into registers, this
code is a pretty straightforward transla-
tion of our source into assembly language,
http://www.gdmag.com

 Listing 2
which is disappointing. For example, the
compiler doesn’t bother to load the source
vector into registers outside the loop, even
though it’s used three times and cannot
be aliased because of our temporary
results array. Also, instead of leaving the
temporary results in registers, it actually
copies them out to the stack and then
copies the stack to the destination.

It even increments the destination
pointer in the loop with three discrete
instructions instead of using offsets and
doing one addition at the end, or even
using the PowerPC’s autoincrement
instructions. The Motorola compiler also
produced the fastest code for Listing 1,
and the difference between the timings
for Listings 1 and 2 can be attributed to
the naive compilation of the temporary
copy loop at the end of Listing 2 (even
though the temporary loop was supposed
to help by eliminating the possibility of
aliasing). Overall, not a great showing,
even by our winner in this round. Clearly,
the compilers need more help.

Bust a KAP
The Motorola compiler ships with an
interesting tool, called the Kuck and
Associates Preprocessor for C (KAP).
Basically, KAP compiles your C code (it
doesn’t support C++), optimizes it, and
then generates C code as its output
TransformVectors2__FPfPA3_CfPCfi.b:
cmpi 0x7,0x0,r6,0 ; compare count to 0
addi r11,r0,0 ; Counter = r11 = 0
bc 0x4,0x1d,L..11 ; bail out if count = 0
addi r8,sp,24 ; allocate some stack

L..8: ori r9,r4,0x0 ; r9 = pMatrix
addi r10,r0,0 ; r10 = 0
ori r7,r10,0x0 ; r7 = 0
subfic r10,r10,3 ; r10 = 3
mtctr r10 ; ctr = 3

L..9: lfs f1,0(r9) ; f1 = pMatrix[0]
lfs f2,0(r5) ; f2 = pSource[0]
lfs f3,4(r9) ; f3 = pMatrix[1]
lfs f4,4(r5) ; f4 = pSource[1]
fmuls f1,f1,f2 ; f1 = f1 * f2
lfs f2,8(r9) ; f2 = pMatrix[2]
lfs f5,8(r5) ; f5 = pSource[2]
fmadds f3,f3,f4,f1 ; f3 = f3 * f4 + f1
addi r9,r9,12 ; pMatrix->next row
fmadds f2,f2,f5,f3 ; f2 = f2 * f5 + f3
stfsx f2,r8,r7 ; *(stack + r7) = f2
addi r7,r7,4 ; r7 next float
bc 0x10,0x0,L..9 ; branch if (—ctr)
lfs f1,0(r8) ; f1 = stack[0]
lfs f2,4(r8) ; f2 = stack[1]
lfs f3,8(r8) ; f3 = stack[2]
stfs f1,0(r3) ; pDest[0] = f1
addi r3,r3,4 ; pDest++
addi r11,r11,1 ; Counter++
stfs f2,0(r3) ; pDest[1] = f2
addi r3,r3,4 ; pDest++
cmp 0x7,0x0,r11,r6 ; flags = Counter <

NumVecs
addi r5,r5,12 ; pSource += 3
stfs f3,0(r3) ; pDest[2] = f3
addi r3,r3,4 ; pDest++
bc 0xc,0x1c,L..8 ; branch if (Counter <

NumVecs)
L..11: addi sp,sp,48 ; clear stack

bclr 0x14,0x0 ; return
void TransformVectors2(float *pDestVectors,
float const (*pMatrix)[3], float const *pSourceVectors,
int NumberOfVectors)

{
int Counter, i, j;
for(Counter = 0;Counter < NumberOfVectors;Counter++) {

float aTemp[3];
for(i = 0;i < 3;i++) {

float Value = 0;
for(j = 0;j < 3;j++) {

Value += pMatrix[i][j] * pSourceVectors[j];
}
aTemp[i] = Value;

}
pSourceVectors += 3;
for(i = 0;i < 3;i++) {

*pDestVectors++ = aTemp[i];
}

}
}

B E H I N D T H E S C R E E N

16 GAME DEVELOPER • JUNE/JULY 1996 http://www.gdmag.com

Listing 4. The KAPed Listing 2
instead of assembly language. When I
first got the Motorola compiler, I figured
my test would be so simple that there was
no way KAP could help out, but after
looking at the results we just discussed, I
figured anything was worth a try. Listing
4 shows the output of running Listing 2
through KAP (they call the processed
code KAPed). If you’ve never seen
machine-generated C code, don’t be sur-
prised by stuff like the “if (1)” block—
compilers output weird stuff like that for
bizarre reasons. However, you should be
surprised at how poor the code is. It
unrolls the loop, which is fine, but why
does it go to the trouble of putting the
temporaries in aTemp and then looping
over aTemp to copy them into the destina-
tion? More absurd yet is that something
as mundane as unrolling a loop in this
simple function actually helped the com-
pilers produce faster code.

You can see the timing results in
Table 1. The KAPed Listing 1 is not
even worthy of print, and as you can see
the compilers all got slower on that ver-
sion. The KAPed Listing 2 (shown in
Listing 4) actually made a positive differ-
ence, even on the best compilers, and it
made a huge difference on Symantec.
Even so, if you thought it was bad that
KAP generated the redundant loop at the
end of Listing 4, it’s even worse that every
compiler generated actual assembly lan-
guage code for that loop! The worst
offender is clearly Symantec. Symantec
ships a prerelease version of Apple’s
MrCpp compiler with their package, so
it’s unclear if I should even review
Symantec on their optimization quality
because I think they expect you to use
MrCpp if you care about run-time speed.
However, MrCpp and Symantec’s main-
void TransformVectors2(float *pDestVectors,
const float (*pMatrix)[3], const float *pSourceVectors,
int NumberOfVectors)

{
int Counter, i, j;
float aTemp[3];
float Value, _Krr1, _Krr2, _Krr4, _Krr5;
long _Kii1, _Kii2;
for (Counter = 0; Counter<NumberOfVectors; Counter++) {

_Krr1 = 0.0F; _Krr2 = 0.0F; Value = 0.0F;
_Kii1 = Counter * 3;
_Krr1 += pMatrix[0][0] * pSourceVectors[_Kii1];
_Krr2 += pMatrix[1][0] * pSourceVectors[_Kii1];
Value += pMatrix[2][0] * pSourceVectors[_Kii1];
_Krr1 += pMatrix[0][1] * pSourceVectors[_Kii1+1];
_Krr2 += pMatrix[1][1] * pSourceVectors[_Kii1+1];
Value += pMatrix[2][1] * pSourceVectors[_Kii1+1];
if (1) {

_Krr1 += pMatrix[0][2] * pSourceVectors[_Kii1+2];
_Krr2 += pMatrix[1][2] * pSourceVectors[_Kii1+2];

B E H I N D T H E S C R E E N

Listing 4. Continued from p. 16 Listing 5. Hand-optimized Listing 1
line compiler are not C++ feature-equiva-
lent, so I’m not sure how they can expect
you to freely exchange them.

A Helping Hand
At this point, it was clear that the compil-
ers by themselves—and even with the
help of KAP, for what it’s worth—were
not going to be able to produce reason-
able code for these functions, so I had to
18 GAME DEVELOPER • JUNE/JULY 1996
step in and give them
a hand. I looked at
what kind of
improvement KAP
got from using what
I had assumed were
brain-dead rewrites
(I can’t even bring myself to call them
optimizations), and I decided to hand
code the Transform functions to see what

Valu
Valu
Valu
*pDe
pSou

}
}

http://www.gdmag.com
would come out. Listings 5 and 6 contain
the hand-optimized versions of Listings 1
and 2, respectively. You can see from the
Value += pMatrix[2][2] * pSourceVectors[_Kii1+2];
}
aTemp[0] = _Krr1; aTemp[1] = _Krr2; aTemp[2] = Value;
_Kii2 = Counter * 3;
for (i = 0; i<=2; i++) {

_Krr5 = aTemp[i]; _Krr4 = _Krr5;
pDestVectors[_Kii2+i] = _Krr4;

}
}
pSourceVectors += NumberOfVectors * 3;
pDestVectors += NumberOfVectors * 3;

}

void TransformVectors(float *pDestVectors,
const float (*pMatrix)[3], const float *pSourceVectors,
int NumberOfVectors)

{
int Counter;
float Value0, Value1, Value2;
for (Counter = 0; Counter<NumberOfVectors; Counter++) {

Value0 = pMatrix[0][0] * pSourceVectors[0];
Value0 += pMatrix[0][1] * pSourceVectors[1];
Value0 += pMatrix[0][2] * pSourceVectors[2];
*pDestVectors++ = Value0;
Value1 = pMatrix[1][0] * pSourceVectors[0];
Value1 += pMatrix[1][1] * pSourceVectors[1];
Value1 += pMatrix[1][2] * pSourceVectors[2];
*pDestVectors++ = Value1;

e2 = pMatrix[2][0] * pSourceVectors[0];
e2 += pMatrix[2][1] * pSourceVectors[1];
e2 += pMatrix[2][2] * pSourceVectors[2];
stVectors++ = Value2;
rceVectors += 3;

B E H I N D T H E S C R E E N

20 GAME DEVELOPER • JUNE/JULY 1996 http://www.g

Listing 6. Hand-optimized Listing 2
 timing results in the
last two columns of
Table 1 that it made
a big difference on all
the compilers.

Why did it
make such a big dif-
ference? I have no
idea, and the only
explanation I can
come up with is that
you need to hold
your compiler’s hand
on any piece of code
you care about. The
changes I made for
Listings 5 and 6 are
very obvious (to a
human, if not a com-
piler). I’m basically
just stating explicitly
where variables are
accessed, where pos-
sible aliasing can
dmag.com
occur, and which variables are constant
throughout a loop iteration. These are all
things the compiler is supposed to do for
us, so we can work on more important
stuff, like design and algorithms, or
assembly language code for our most
inner loops. We’re supposed to trust the
compiler will do a respectable job, with-
out having to optimize every line of our
code (an impossible task for all but the
smallest programs).

Now, if you’re like me, you’ve been
waiting to say something about all this
loop unrolling for a while now. You’re
waiting to say that you don’t actually
want the compiler to unroll loops all over
the place, because that makes your code
bigger and probably slower. Hah! I was
waiting for you to say that, because the
most amazing thing of all about this test
is that a couple of the compilers pro-
duced code for Listing 6 that is smaller
than the code for the original non-
unrolled Listing 2. Listing 7 shows the
void TransformVectors2(float *pDestVectors,
const float (*pMatrix)[3], const float *pSourceVectors,
int NumberOfVectors)

{
int Counter;
float Value, _Krr1, _Krr2;
for (Counter = 0; Counter<NumberOfVectors; Counter++) {

_Krr1 = pMatrix[0][0] * pSourceVectors[0];
_Krr2 = pMatrix[1][0] * pSourceVectors[0];
Value = pMatrix[2][0] * pSourceVectors[0];
_Krr1 += pMatrix[0][1] * pSourceVectors[1];
_Krr2 += pMatrix[1][1] * pSourceVectors[1];
Value += pMatrix[2][1] * pSourceVectors[1];
_Krr1 += pMatrix[0][2] * pSourceVectors[2];
_Krr2 += pMatrix[1][2] * pSourceVectors[2];
Value += pMatrix[2][2] * pSourceVectors[2];
*pDestVectors++ = _Krr1;
*pDestVectors++ = _Krr2;
*pDestVectors++ = Value;
pSourceVectors += 3;

}
}

B E H I N D T H E S C R E E N
CodeWarrior version of Listing 6; it’s at
least 6 instructions smaller than any of
the compiled versions of Listing 2, and
about two to five times as fast. Motorola
produced similar code. (MrCpp decided
now was the time to unroll the entire
function, which tripled the size of the
code for absolutely no performance
increase.) Don’t for a minute think this
is a compliment for CodeWarrior or
Motorola, it’s really a damning insult to
all the compilers: on maximum opti-
mizations they didn’t find the smaller
and faster version of a basic function like
a matrix transform. Heck, just by inspec-
tion I can see how to save a couple more
instructions in Listing 7. And people
actually say that writing assembly lan-
guage is a dying art.

You Lose Some
If this was a normal compiler review, it
would be time to pick a winner, but,
instead, it’s time to point out that you and
22 GAME DEVELOPER • JUNE/JULY 1996
I are the losers in this situation. Pundits
have been saying that assembly language
is dead—especially on RISC chips like
the PowerPC—and it should be eminent-
ly clear from the listings in this article
that those people have no clue what
they’re talking about. Even a beginning
assembly language programmer could
produce better code than any of the com-
pilers for Listings 1 and 2, and this is
simple code. While you might not choose
to write your code in assembly language,
you end up with C code that looks like
assembly language if you want respectable
performance, like Listings 5 and 6.

If I had to choose a winner, I’d pick
the Motorola C++ compiler, because it
seems like the least incompetent optimiz-
er of the bunch. The Microsoft compiler
showed some promising aggressiveness by
loading the entire matrix into registers
once at the top of the loop for its version
of Listings 5 and 6. Microsoft has an
option I turned on that tells the compiler
http://www.gdmag.com
there’s no pointer aliasing that allowed
them to perform this optimization, but
they didn’t take advantage of the assump-
tion anywhere else that I could see. Given
this optimization, I’m not sure why their
version of Listing 6 wasn’t faster than the
others…it may have been a pipelining
issue, or the loop might have been cache
bound. As soon as I learn a bit more
about the subtleties of the PowerPC 604,
I’ll get back to you on this one.

In the next issue, I’ll quickly cover a
bunch of Intel x86 compilers, but we will
still have room to talk about some opti-
mization programming techniques of our
own, because the compilers clearly aren’t
going to do it for us.

This Just In: I was keeping Mike
Phillip at Motorola’s compiler group
posted on my results, and he just got
back to me with a command line switch
for KAP that will assume there’s no
aliasing. When you turn it on, KAP pro-
duces something resembling Listing 6,

TransformVectors2__FPfPA3_CfPCfi

mr r0,r6 ; r0 = NumVecs

cmpwi r6,0 ; flags = NumVecs == 0

mtctr r0 ; ctr = NumVecs

blelr ; bail if(NumVects == 0)

L1: lfs fp1,0(r4) ; fp1 = pMatrix[0][0]

lfs fp3,0(r5) ; fp3 = pSource[0]

lfs fp0,12(r4) ; fp0 = pMatrix[1][0]

lfs fp2,24(r4) ; fp2 = pMatrix[2][0]

fmuls fp7,fp1,fp3; fp7 = fp1 * fp3

lfs fp1,4(r4) ; fp1 = pMatrix[0][1]

lfs fp5,4(r5) ; fp5 = pSource[1]

fmuls fp8,fp0,fp3; fp8 = fp0 * fp3

fmuls fp6,fp2,fp3; fp6 = fp2 * fp3

lfs fp0,16(r4) ; fp0 = pMatrix[1][1]

lfs fp4,28(r4) ; fp4 = pMatrix[2][1]

lfs fp2,8(r5) ; fp2 = pSource[2]

fmadds fp7,fp1,fp5,fp7

; fp7 = fp1 * fp5 + fp7

addi r5,r5,12 ; pSource += 3

lfs fp3,8(r4) ; fp3 = pMatrix[0][2]

fmadds fp8,fp0,fp5,fp8

; fp8 = fp0 * fp5 + fp8

lfs fp1,20(r4); fp1 = pMatrix[1][2]

fmadds fp6,fp4,fp5,fp6

; fp6 = fp4 * fp5 + fp6

lfs fp0,32(r4); fp0 = pMatrix[2][2]

fmadds fp7,fp3,fp2,fp7

; fp7 = fp3 * fp2 + fp7

fmadds fp8,fp1,fp2,fp8

; fp8 = fp1 * fp2 + fp8

fmadds fp6,fp0,fp2,fp6

; fp6 = fp0 * fp2 + fp6

stfs fp7,0(r3) ; pDest[0] = fp7

stfsu fp8,4(r3)

; pDest[1] = fp8, pDest++

stfsu fp6,4(r3)

; pDest[1] = fp6, pDest++

addi r3,r3,4 ; pDest++

bdnz L1 ; branch if(—ctr)

blr ; return

Listing 7. CodeWarrior version of Listing 6
so all the compilers do well. However,
not to be out-done, I decided to take this
no-aliasing assumption to the limit and
explicitly load the matrix into tempo-
raries (much like the Microsoft compiler
tried to do). The result: another 25%
speedup, with times around 15 cycles,
for something the compiler could have
done itself. The compilers lose again. ■

Chris Hecker tries to live an optimized
life, but he does about as good of a job on his
own life as the current crop of compilers does
on his code. Contact him at gdmag@mfi.com.
GAME DEVELOPER • JUNE/JULY 1996 23http://www.gdmag.com

Please use checker@d6.com for email.

