
Attention:

This material is copyright 1995-1997 Chris Hecker. All rights
reserved.

You have permission to read this article for your own education. You
do not have permission to put it on your website (but you may link
to my main page, below), or to put it in a book, or hand it out to your
class or your company, etc. If you have any questions about using
this article, send me email. If you got this article from a web page
that was not mine, please let me know about it.

Thank you, and I hope you enjoy the article,

Chris Hecker
definition six, incorporated
checker@d6.com
http://www.d6.com/users/checker

PS. The email address at the end of the article is incorrect. Please
use checker@d6.com for any correspondence.

Changing
The Rules for
Transparent BLTs

U N D E R T H E H O O D

W
hen I sit down to write an
article, the first question I
always ask myself is, “Who
is going to read this?” No, I
don’t mean, “Who in their
right mind would read
this?” I mean who is the
audience for this article, and

how technical are they?
For this column, I’d like the answer

to be “experienced programmers,” and I
intend to aim the content at just such a
readership. My goal is to provide
detailed coverage of specific game pro-
gramming techniques and to present
production-quality code, sometimes at
the expense of less experienced develop-
ers who might want to read the code a
few times and step through it in a
debugger to see how it works. This is not
to say I’ll be cryptic, but I’m going to try
to move fast enough to keep the
advanced people interested, while giving
the beginners something they’ll need to
think about for a bit before grasping all

the issues, both explicit and implied. Let
me know what you think via the contact
information at the end of the article!

Transparency
Transparent block transfers (BLTs—
pixel copies) are one of the more useful
techniques for game programmers. A
transparent BLT can be roughly defined
as a block transfer where some pixels are
not copied from the source to the desti-
nation, leaving destination pixels show-
ing through. The list of effects you can
generate with a simple transparent BLT
is endless: sprites, floating text or game
scores, cursors, shadows, floating maps,
and the like. How are transparent BLTs
implemented? We’ll answer that ques-
tion with working code, optimize the
code, and write a transparent BLT that
will handle both WinG DIB orienta-
tions as a bonus.

There are a number of ways you can
implement transparent BLTs. The most
common specifies a single pixel value in
the source bitmap (the sprite, if you will)
that will not be copied from the source
to the destination. The BLT routine
examines each pixel and decides whether
it is the “transparent color” or whether
it’s an actual data value that needs to be
copied to the destination bitmap, as
shown in Figure 1. Other techniques
include using a mask to specify which
pixels are copied, using raster operations
under Windows, and using special
bitmap formats (like run length encod-
ing) for the source sprite. When we start
optimizing, we’ll look into some of these
other techniques and how they compare
with the base technique.

First, we’ll create a relatively naive

12 GAME DEVELOPER • FEBRUARY 1995

Figure 1. A Transparent BLT

Transparent Color

Opaque Pixel

transparent BLT. I’m going to write the
BLT for use under Windows (my pre-
ferred development environment), but it
isn’t Windows specific and should port
to DOS or other platforms without
problems. We’ll use device independent
bitmaps (DIBs), which are just in-mem-
ory bitmaps with a header describing
their pixel format.

Our naive implementation will read
every pixel in the source DIB, check for
the transparent color, and optionally
write the pixel to the destination DIB.
Since we want this code to work well on
Windows with WinG, we’ll need to deal
with the two possible destination “DIB
orientations.”

Orient Yourself
There are two DIB orientations, top-
down and bottom-up. Top-down DIBs
are arranged in memory much like the
DOS Mode 13h frame buffer or your
average DOS bitmap. The pointer to the
DIB bits points to the topmost scanline
on the DIB, and as the value of the
pointer increases, it moves down the DIB
surface. On the other hand, bottom-up
DIBs are “upside-down,” with the point-
er referencing the bottom-most scanline,
its value increasing as it moves up the
DIB surface. Movement across scanlines
from left to right is always accompanied
by an increase in memory address; only
the vertical movement is affected by the
orientation. WinG chooses the fastest
DIB orientation based on the run-time
configuration, so code that expects the
best performance must be prepared to
deal with either type. This is actually
quite easy in practice, and the technique I
describe here draws to both orientations

without any performance penalty.
Listing 1 shows our first transpar-

ent BLT. This code only handles 8 bits-
per-pixel DIBs, but could you can easily
extend it to other formats. Our initial
inner loop looks like this:

for(Y = 0;Y < Height;Y++) {

for(X = 0;X < Width;X++) {

if(*pSourceBits != TransparentColor) {

// not transparent?

*pDestBits = *pSourceBits;

// copy the pixel

}

pDestBits++;

// advance to next pixels

pSourceBits++;

}

pDestBits += DestDeltaScan;

// advance to next dest

pSourceBits += SourceDeltaScan;

// and source pixels

}

We introduce the DeltaScan vari-
ables (DestDeltaScan and SourceDeltaS-
can) to enable top-down and bottom-
up drawing. We always start the BLT
from the top, and the DeltaScans move
their respective pointers down the DIB
surface from one scanline to the next.
We set up the DeltaScans to move from
the end of one processed span to the
beginning of the next span, so we step
directly to the next span of pixels to
BLT without calculating a new X or Y
offset from the start of the DIB, avoid-
ing multiplies in the loop and other
overhead. On top-down DIBs, the
DeltaScan is positive (the “down” of
“top-down” indicates the direction in
which a positive pointer increment

What‘s a good

concept to follow

when you‘re

working with

transparent BLTs?

If the rules forbid

you from getting your

images onscreen

quickly enough,

change the rules!

Chris Hecker

GAME DEVELOPER • FEBRUARY 1995 13

U N D E R T H E H O O D

14 GAME DEVELOPER • PREMIER 1994

#include<windows.h>
#include<assert.h>

void TransparentBlt(BITMAPINFOHEADER *pDestHeader, BYTE *pDestBits,
int XDest, int YDest, BITMAPINFOHEADER *pSourceHeader,
BYTE *pSourceBits, BYTE TransparentColor){

int DestDeltaScan, DestWidthBytes, DestRealHeight;
int SourceDeltaScan, XSource = 0, YSource = 0;
int Width, Height;

DestWidthBytes = (pDestHeader->biWidth + 3) & ~3; // dword align

assert(pDestHeader->biSizeImage); // insure biSizeImage is set

if(pDestHeader->biHeight < 0){
// dest is top-down
DestRealHeight = -pDestHeader->biHeight; // get positive height
DestDeltaScan = DestWidthBytes; // travel down dest

}else{
// dest is bottom-up
DestRealHeight = pDestHeader->biHeight;
DestDeltaScan = -DestWidthBytes; // travel down dest
// point to top scanline
pDestBits += pDestHeader->biSizeImage - DestWidthBytes;

}

// pDestBits -> top scanline of dest
// DestDeltaScan -> distance from scan to scan in dest

// clip source to dest

assert(pSourceHeader->biHeight < 0); // assume top-down source DIB
Width = pSourceHeader->biWidth;
Height = -pSourceHeader->biHeight;

if(XDest < 0){
// left clipped
Width += XDest;
XSource = -XDest;
XDest = 0;

}

if((XDest + Width) > pDestHeader->biWidth){
//right clipped
Width = pDestHeader->biWidth - XDest;

}

if(YDest < 0){
// top clipped
Height += YDest;
YSource = -YDest;
YDest = 0;

}

Listing 1. Simple Transparent BLT

if((YDest + Height)>DestRealHeight)
{ // bottom clipped

Height = DestRealHeight - /
YDest;
}

SourceDeltaScan = /
(pSourceHeader->biWidth + 3)/

& ~3; // dword align

// step to starting source pixel
pSourceBits += /
(YSource * SourceDeltaScan) + /
XSource;

// step to starting dest pixel
pDestBits += /
(YDest * DestDeltaScan) + XDest;

// account for processed span in
// delta scans
SourceDeltaScan -= Width;
DestDeltaScan -= Width;

if((Height > 0) && (Width > 0))
{

// we have something to BLT
int X, Y;

for(Y = 0;Y < Height;Y++) {
for(X = 0;X < Width;X++) {

if(*pSourceBits != /
TransparentColor) {

// not transparent?
*pDestBits = /

*pSourceBits; // copy the pixel
}
pDestBits++;

// advance to next pixels
pSourceBits++;

}
pDestBits += DestDeltaScan;

// advance to next dest
pSourceBits += /

SourceDeltaScan;
// and source pixels

}
}

}

Listing 1.

travels), and the pointer increases
through memory as we process the
BLT. On bottom-up DIBs, the pointer
needs to decrease to move down the
surface, so the DeltaScan is negative.

Because we always want the BLT
to start at the top of the DIBs, we need
the pointers to start there, too. For top-
down DIBs, this is no problem; the bits
pointer already points to the top scan-
line. For bottom-up DIBs, we need to
move the pointer from the bottom scan-
line to the top using the following
expression:

pDestBits += pDestHeader->

biSizeImage - DestWidthBytes;

This adds the size of the DIB in
bytes to the pointer—bringing it past the
top scanline—and subtracts the width of
a single scan to bring the pointer back
onto the DIB, leaving it pointing at the
beginning of the top scanline.

The last bit of code in Listing 1
(before the actual BLT) clips the source
to the destination. We step through the
extents, adjusting the source and desti-
nation offsets and the width and height
when necessary. Finally, if we have pixels
to draw after the clip, we go into our
loop.

Change the Rules
Now that we’ve got the setup code out of
the way, we can try to optimize the inner
loop. The first question we must ask is
always, “Do I need to optimize the inner
loop?” If this code is just supposed to
draw a score on top of a bitmap the
answer might be no. But if that were the
case, this would be a short column, so
let’s assume this code is our program’s
bottleneck.

Many people, including myself,
make the same mistake over and over
again when they start to optimize a piece
of code. They usually look at the C ver-
sion they have working and start rewrit-
ing it in assembly language, without tak-
ing a step back to ask themselves,
“What’s this algorithm really doing?”

The key to writing code that runs
very fast is not to optimize code that
obeys the current set of rules and struc-

ture you’ve imposed on it, the key is to
change the rules. My favorite scene from
Star Trek 2: The Wrath of Khan is the
one where Bones introduces Kirk to a
young Starfleet Academy graduate as
the only person who has ever aced the
final exam, the Kobiashi Maru. When
the graduate asks Kirk how it is possible
he beat a test that’s specifically pro-
grammed to be unbeatable, Kirk replies
that he sneaked into the testing room
the night before his exam and repro-
grammed the computer. Kirk would
make a great optimizer.

Let’s step back and see if we can
change the rules. The answer to “What’s
this algorithm really doing?” is not,

“Checking every byte for the transparent
color and copying it if necessary.” That
just happens to be the way the current
implementation works. The real answer
for most sprite-type source bitmaps is,
“Skipping a bunch of transparent bytes,
copying some data bytes, skipping some
more, and then doing it all over again.”
If we understand this latter answer, a
whole range of optimization opportuni-
ties open up to us.

We can take advantage of these
opportunities by examining the way our
current implementation deals with com-
mon input data and looking for ways to
change it for the better. Most sprites are
irregular shapes with transparent areas
on the sides of the bitmap and pixel data
in the center. Let’s take an example

scanline from such a sprite. These values
are in hex:

FF FF FF FF FF FF FF FF FF FF FF FF FF

FF FF 01 01 02 02 03 03 03 04 04 04 03

03 03 02 01 FF FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF

If we assume FF is our transparent
color, the current code will loop through
these 46 bytes and skip 31 of them
because they’re transparent. In other
words, it’s spending 67% of its time on
this scan deciding to do nothing. The
other 33% of the time, it’s checking for
the transparent color when all it needs to
do is copy the data. The amount of
transparent color per scanline is obvious-
ly dependent on your sprite artwork; I’m
using the doggie2.bmp bitmap (as shown
in Figure 2) supplied with the WinG
SDK, which is a fairly typical sprite
image.

The “rule change” we need so we
can take advantage of the source redun-
dancy is a change to the source bitmap
format. Instead of storing each pixel sep-
arately (and processing each pixel sepa-
rately in the BLT), let’s use a compres-
sion technique to encode pixel spans
compactly. This technique is called run
length encoding (RLE).

There are many forms of RLE, but
most use a few different “token” types to
compress bitmaps. Common tokens
include Run records, which have a value
and a number of pixels to copy that value
in the destination; Copy records, which
tell the decompressor to copy a series of
pixels from the source like a normal
BLT; and Skip (or Jump) records, which
give a number of pixels to skip in the
destination. (You can find documenta-
tion for one type of RLE format in the
Windows SDK documentation under
BITMAPINFO. The PCX file format is
another RLE format commonly used on
PCs.)

I’ve defined a simple RLE format
for compressing our source bitmap, with
the tokens shown in Table 1. Each
record is a DWORD in the source bitmap,
with the high word specifying the type
of the token, and the low word specify-
ing the run length for each token.

U N D E R T H E H O O D

16 GAME DEVELOPER • FEBRUARY 1995

Figure 2. Doggie2.bmp

Here is the same scanline encoded
with this RLE format:

0000001F 0001000F 0002000F 01 01 02 02

03 03 03 04 04 04 03 03 03 02 01

00010010

Now, instead of checking every byte
as it transfers, the code can look at each
record. If it’s a SKIPRUN, the decompres-
sor just increments the destination
pointer, skipping over the pixels that
wouldn’t be drawn anyway (they’re
transparent in the source), and if it’s a
COPYRUN, the decompressor copies the
pixels without checking for the transpar-
ent color. Plus, although we’re not con-
cerned with size compression right now,
this encoding is only 31 bytes long, com-
pared to 46 bytes for the raw scanline.

Instead of using SKIPRUNs to com-
press transparent runs, an alternative
encoding would use another record type,
the COLORRUN. This record encodes a strip
of pixels with the same value. If we used
COLORRUNs, we’d be able to change the
transparent color on-the-fly to make
new parts of the source bitmap invisible,
but our decompressor would need to
treat COLORRUNs differently depending on
whether they encoded the transparent
color or not.

In an RLE bitmap, each scanline is a
different length in memory, so it’s some-
times hard to find a certain line. The NEW-
LINE record makes clipping and subrectan-
gle BLTing much easier. If we want to
skip to a certain line, we start at the first
scanline and move from NEWLINE to NEWLINE
until we get to the one we want.

Listing 2 shows the new transpar-
ent BLT, TransparentBltRLE. The setup
code for the destination and the clipping
calculations stay the same, and both were
copied from Listing 1. The actual inner
loop looks a lot different from Listing 1
because we need to parse the source

RLE. Clipping an RLE bitmap in the
X-axis gets interesting; we need to loop
over the records until we find one that
intersects our BLT rectangle, process the
“active” portion (the portion that actually
intersects), then start the BLT loop on
the next record.

Listing 3 is the RLE compressor,
CompressSprite. It’s a fairly simple state
machine that writes out records on state
transitions from SKIPRUNs to COPYRUNs or
vice versa. This code could use a bit of
work. It doesn’t shrink the allocated
memory after compressing the sprite, for
example. We’ll discuss other optimiza-
tions to the format below.

Numbers
Listing 2 is significantly faster than List-
ing 1 when BLTing the doggie. Table 2
contains some performance numbers (for
1,000 iterations). Listing 2 is two times
faster than Listing 1. More interesting
still, Listing 2 is almost twice as fast as
fast32.asm, the assembly language trans-
parent BLT we shipped with the WinG
SDK! Fast32.asm is basically an opti-
mized 386 assembly language version of
Listing 1, and it uses some special tech-
niques to increase speed, but it’s clear
that changing the rules gives a much
bigger payoff than just brute force opti-
mization or assembly language.

Give Me More
If we want to max out Listing 2, there
are a number of other techniques to con-
sider. You’ll notice that if a source scan-
line looks like this:

FF 01 FF 01 FF 01 FF 01 FF

CompressSprite will generate this:

0000002C 00010001 00020001 01 00010001

00020001 01 00010001 00020001 01

00010001 00020001 01 00010001

This is definitely a waste of space
and almost certainly a speed loss, too. To
fix this case, we could extend our RLE
format to contain a transparent color,
and instead of simply copying the COPY-
RUN data bytes with memcpy, as we did in
Listing 2, we could run the equivalent of
Listing 1’s inner loop on them. This
gives us the benefits of both techniques.
We could go even farther and make a
new record type, TRANSCOPYRUN, for runs
that contain pixels with interspersed
transparent colors and keep COPYRUN for
plain copies so we don’t slow down the
normal nontransparent runs. Our com-
pressor would have to be smarter, too. It
would look at the data and make a deci-
sion about whether it is better to com-
press a run of transparency with a
SKIPRUN or to simply embed the transpar-
ent pixels in a TRANSCOPYRUN.

Obviously, well-written assembly
language code would make things faster
as well, but we could probably optimize
the C code without resorting to assembly
language and still get some more perfor-
mance. For example, we could DWORD align
our copies, we could unroll once or twice
(although on a Pentium especially, this
probably wouldn’t be a big win and it

would make our code bigger and less
cacheable), and we could redesign the
RLE format so we read less (using DWORD
tokens is wasteful in most circumstances).
Another option to consider is compiling
code to do the transparent BLT, so
instead of our sources being bitmaps,
they’d be blocks of code that draw the
sprite directly. Fast32.asm uses hysteresis
to speed things up, and we could put that
in our RLE decompressor as well.

Hysteresis is basically “stickiness,”
or a tendency to stay the same. For
example, when I’m awake, I tend to stay

U N D E R T H E H O O D

18 GAME DEVELOPER • FEBRUARY 1995

Listing 1 7,100 ms
Listing 2 2,414 ms
fast32.asm 6,950 ms
[Fast32.asm is from the WinG SDK
doggie sample application.]

Table 2. Timing Numbers

NEWLINE 0000NNNN NNNN=number of bytes to next NEWLINE record
SKIPRUN 0001NNNN NNNN=number of pixels to skip in destination
COPYRUN 0002NNNN NNNN=number of pixels to copy from source to

destination

Table 1. RLE Tokens

awake for a long time, and when I’m
asleep in bed, I stay there, too. You can
use hysteresis in transparent BLTing by
recognizing that when you’re in a trans-
parent run you’ll probably be there for a
while, and similarly, when you’re copy-
ing pixels, you’ll do that for a bit rather
than switching between the two. Of
course, our RLE format takes advantage
of a lot of this redundancy, so hysteresis
might not make much sense for our
decompressor.

The only way to know is to under-
stand your data and truthfully answer
the question, “What’s this algorithm
really doing?”

Actually, you need to answer this
question in two parts. The first, as we
discussed, is understanding what the
algorithm is supposed to do, not what
the current implementation does. The
second part comes in when you’ve decid-
ed on an optimization strategy, and is
best summarized by Michael Abrash’s
quote from Zen of Code Optimization
(Coriolis, 1994), “Assume nothing!”
Time your algorithms, don’t assume cer-
tain performance. I use the timeGetTime
API on Windows, which returns mil-
lisecond-accurate timings, and Michael
uses the Zen Timer, but whatever you
do, time your results.

One Last Word
In the future, I plan to cover (in a tech-
nical way, naturally) digital wave audio
mixing, perspective texture mapping,
animated cursors, and maybe some
wacky 32-bit programming hacks under
16-bit Windows. Write and let me know
what you think or, better yet, post to
rec.games.programmer or the Com-
puServe GAMDEV forum so everyone
can join in. I also hang out on BIX in
Michael Abrash’s ibm.pc/fast.code con-
ference, simply the best place to discuss
optimization I’ve ever seen. ■

Chris Hecker works for a large soft-
ware company in the Pacific Northwest. He
can’t mention the name because then he’ll
need all sorts of disclaimers. It’s just a coin-
cidence that he can be reached at
checker@microsoft.com or through Game
Developer magazine.

GAME DEVELOPER • FEBRUARY 1995 19

#include<windows.h>
#include<windowsx.h>
#include<string.h>
#include<assert.h>

#define ISSKIPRUN(Record) (int)((((DWORD)(Record)) & 0xFFFF0000) ==
0x00010000)
#define ISCOPYRUN(Record) (int)((((DWORD)(Record)) & 0xFFFF0000) ==
0x00020000)

#define RUNLENGTH(Record) (int)(((DWORD)(Record)) & 0xFFFF)

void TransparentBltRLE(BITMAPINFOHEADER *pDestHeader, BYTE *pDestBits,
int XDest, int YDest, BITMAPINFOHEADER *pSourceHeader,
BYTE *pSourceBits, BYTE TransparentColor){

int DestDeltaScan, DestWidthBytes, DestRealHeight;
int XSource = 0, YSource = 0;
int Width, Height;

DestWidthBytes = (pDestHeader->biWidth + 3) & ~3; // dword align

assert(pDestHeader->biSizeImage); // insure biSizeImage is set

if(pDestHeader->biHeight < 0){
// dest is top-down
DestRealHeight = -pDestHeader->biHeight; // get positive height
DestDeltaScan = DestWidthBytes; // travel down dest

}else{
// dest is bottom-up
DestRealHeight = pDestHeader->biHeight;
DestDeltaScan = -DestWidthBytes; // travel down dest
// point to top scanline
pDestBits += pDestHeader->biSizeImage - DestWidthBytes;

}

// pDestBits -> top scanline of dest
// DestDeltaScan -> distance from scan to scan in dest

// clip source to dest

assert(pSourceHeader->biHeight < 0); // assume top-down source DIB
Width = pSourceHeader->biWidth;
Height = -pSourceHeader->biHeight;

if(XDest < 0){
// left clipped
Width += XDest;
XSource = -XDest;
XDest = 0;

}

if((XDest + Width) > pDestHeader->biWidth){
//right clipped
Width = pDestHeader->biWidth - XDest;

Listing 2. RLE Transparent BLT (Continued on p. 20)

Please use checker@d6.com.

U N D E R T H E H O O D

20 GAME DEVELOPER • FEBRUARY 1995

}

if(YDest < 0){
// top clipped
Height += YDest;
YSource = -YDest;
YDest = 0;

}

if((YDest + Height) > DestRealHeight){
// bottom clipped
Height = DestRealHeight - YDest;

}

// step to starting dest pixel
pDestBits += (YDest * DestDeltaScan) + XDest;

// account for span in delta scans
DestDeltaScan -= Width;

if((Height > 0) && (Width > 0)){
// we have something to BLT
int X, Y;
DWORD *pCurrentSourceScan = (DWORD *)pSourceBits;

// prestep to starting source Y

for(Y = 0;Y < YSource;Y++){
pCurrentSourceScan = (DWORD *)((BYTE *)pCurrentSourceScan +

RUNLENGTH(*pCurrentSourceScan));
}

for(Y = 0;Y < Height;Y++){
DWORD *pCurrentSourceRecord = pCurrentSourceScan + 1;

// prestep to starting source X

X = 0;

while(X < XSource){
X += RUNLENGTH(*pCurrentSourceRecord);

if(X > XSource){
// we need to partially process the current record

int Overlap = X - XSource;
int ActiveOverlap = (Overlap > Width) ? Width : Overlap;

if(ISCOPYRUN(*pCurrentSourceRecord)){
// copy overlap pixels to destination

// get pointer to data
BYTE *pCopyRun = (BYTE *)pCurrentSourceRecord + 4;

// prestep to desired pixels
pCopyRun += RUNLENGTH(*pCurrentSourceRecord) - Overlap;

memcpy(pDestBits,pCopyRun,ActiveOverlap);

Listing 2. (Continued on p. 21)

GAME DEVELOPER • PREMIER 1994 21

}

// skip to next dest pixel
pDestBits += ActiveOverlap;

}

// skip to next record

if(ISCOPYRUN(*pCurrentSourceRecord)){
// skip any data bytes
pCurrentSourceRecord =

(DWORD *)((BYTE *)pCurrentSourceRecord +
RUNLENGTH(*pCurrentSourceRecord));

}

pCurrentSourceRecord++; // skip record itself
}

X = X - XSource;

while(X < Width){
int RunLength = RUNLENGTH(*pCurrentSourceRecord);
int RemainingWidth = Width - X;
int ActivePixels = (RunLength > RemainingWidth) ?

RemainingWidth : RunLength;

if(ISCOPYRUN(*pCurrentSourceRecord)){
// copy pixels to destination

// get pointer to data
BYTE *pCopyRun = (BYTE *)pCurrentSourceRecord + 4;

memcpy(pDestBits,pCopyRun,ActivePixels);
}

// skip to next dest pixel
pDestBits += ActivePixels;

// skip to next record

if(ISCOPYRUN(*pCurrentSourceRecord)){
// skip any data bytes
pCurrentSourceRecord =

(DWORD *)((BYTE *)pCurrentSourceRecord + RunLength);
}

pCurrentSourceRecord++; // skip record itself

X += RunLength;
}

pDestBits += DestDeltaScan;

pCurrentSourceScan = (DWORD *)((BYTE *)pCurrentSourceScan +
RUNLENGTH(*pCurrentSourceScan));

}
}

}

Listing 2. (Continued from p. 20)

U N D E R T H E H O O D

22 GAME DEVELOPER • FEBRUARY 1995

State = InCopyRun;
*pOutputByte++ = *pSourceByte;
LineLength += 5;

}

pSourceByte++;

for(X = 1;X < Width;X++){
if(*pSourceByte == TransparentColor){

if(State == InSkipRun){ // still in skip run
CurrentRunLength++;

}else{ // changing to skip run
// write out copy record
*pOutputRecord = COPYRUN(CurrentRunLength);
pOutputRecord = (DWORD *)pOutputByte;

CurrentRunLength = 1;
State = InSkipRun;
LineLength += 4;

}
}else{ // source is data

if(State == InCopyRun){ // still in copy run
CurrentRunLength++;
*pOutputByte++ = *pSourceByte;
LineLength++;

}else{ // changing to copy run
// write out skip record
*pOutputRecord = SKIPRUN(CurrentRunLength);
pOutputRecord++;
pOutputByte = (BYTE *)(pOutputRecord + 1);

CurrentRunLength = 1;
State = InCopyRun;
*pOutputByte++ = *pSourceByte;
LineLength += 5;

}
}

pSourceByte++;
}

// finish off current record

if(State == InSkipRun){
*pOutputRecord = SKIPRUN(CurrentRunLength);
pOutputRecord++;

}else{ // InCopyRun
*pOutputRecord = COPYRUN(CurrentRunLength);
pOutputRecord = (DWORD *)pOutputByte;

}

*pNewlineRecord = NEWLINE(LineLength);

pSourceBits += SourceWidthBytes;
}

return (BYTE *)pOutputBuffer;
}

Listing3.

#include<windows.h>
#include<windowsx.h>
#include<string.h>
#include<assert.h>

#define NEWLINE(Length) /
((DWORD)(0x00000000 | /
(short unsigned)(Length)))

#define SKIPRUN(Length) /
((DWORD)(0x00010000 | /
(short unsigned)(Length)))

#define COPYRUN(Length) /
((DWORD)(0x00020000 | /
(short unsigned)(Length)))

BYTE *CompressSprite(
BITMAPINFOHEADER *pSourceHeader,
BYTE *pSourceBits,
BYTE TransparentColor){
int SourceWidthBytes = /

(pSourceHeader->biWidth + 3) & ~3;
void *pOutputBuffer = /

GlobalAllocPtr/
(GHND,pSourceHeader->biSizeImage);

DWORD *pOutputRecord = /
(DWORD *)pOutputBuffer;

BYTE *pOutputByte;
int X, Y;

assert(pOutputBuffer);

for(Y = 0;/
Y < pSourceHeader->biHeight;Y++){

int Width = /
pSourceHeader->biWidth;

enum state { InSkipRun, /
InCopyRun } State;

BYTE *pSourceByte = /
pSourceBits;

DWORD *pNewlineRecord = /
pOutputRecord++;

int LineLength = 4;
int CurrentRunLength = 1;

pOutputByte = /
(BYTE *)(pOutputRecord + 1);

if(*pSourceByte ==/
TransparentColor){

// we’re starting a skip run
State = InSkipRun;
LineLength += 4;

}else{
// source is data

// we’re starting a copy
run

Listing3. RLE Compressor

