
Attention:

This material is copyright 1995-1997 Chris Hecker. All rights
reserved.

You have permission to read this article for your own education. You
do not have permission to put it on your website (but you may link
to my main page, below), or to put it in a book, or hand it out to your
class or your company, etc. If you have any questions about using
this article, send me email. If you got this article from a web page
that was not mine, please let me know about it.

Thank you, and I hope you enjoy the article,

Chris Hecker
definition six, incorporated
checker@d6.com
http://www.d6.com/users/checker

PS. The email address at the end of the article is incorrect. Please
use checker@d6.com for any correspondence.

A Whirlwind
Tour of WinG

T O U R O F W I N G

I
f you’re like me, the first time you
saw Microsoft Windows 3.0 and its
program manager, you went straight
for the Games program group. Like
me, you probably expected to find a
game as different from DOS games
as Windows is different from DOS
itself. Instead, you found Solitaire.

Not a bad version of Solitaire, but Soli-
taire nonetheless. If you waited until 3.1
to check out Windows, you also found
Minesweeper—a bit more exciting, but
you wouldn’t call it “high-performance.”

Expectations for Windows games
have been very low. When Microsoft
released a set of games called Arcade last

year, reviewers were shocked. They
couldn’t believe games of Arcade’s quality
could be done on Windows. Arcade is a
great set of games, but we are talking
about 1970s technology on 1990s com-
puters! Their enthusiasm was unfounded:
Arcade is nothing compared to the games
you find on DOS. A Pentium probably
has more on-chip cache than the original
Asteroids game had main memory.

Sure, operating systems of today do
more than they did back then (did they
even have operating systems back then?),
and I can play Asteroids while simultane-
ously running other applications on the
same desktop, but is this all we can expect
from our brand new machines running
Windows? On the same hardware, DOS
games have consistently pushed the per-
formance envelope with the current crop
doing full-screen texture-mapped worlds
at 30 frames per second. What’s the cru-
cial difference between DOS games and
Windows games? Graphics performance.

Finally there’s help: WinG. WinG is
a library that eliminates the performance
difference between DOS and Windows
graphics, giving Windows games graphics
performance at or above their DOS coun-
terparts on the same hardware.

Current Windows
Graphics—Slow?
We’re interested in raw blt (bit level trans-
fer) performance: transferring pixels to the
screen in blocks. Most high-performance
games try to achieve smooth animation by
hiding the rendering and only allow the
player to see the resulting frame. These
games compose images into buffers, then
quickly update the display. While the
composition phase is usually application-

When WinDoom was ported, the rendering vs. stretching issue was left to the user by pro-
viding a menu of choices. Now you can set it to render to the current window size or preset
the size and stretch to the current window size.

14 GAME DEVELOPER • SEPTEMBER 1994

specific (each game renders using its own
special algorithms), only a few popular
techniques for updating the display exist.

Update techniques fall into two
groups: blting and page flipping. The
trade-offs between the two techniques on
current PC hardware are far too complex
to cover here, but suffice it to say that
high-performance DOS games use both
techniques (for example, System Shock
and Ultima Underworld I and II blt,
while Doom page flips). It is fairly easy to
move a game from blting to page flipping
or vice versa.

Windows does not currently allow
page flipping, so we will deal with blt per-
formance. Although we’ve said graphics
speed (or lack thereof) is the major
impediment to high-performance Win-
dows games, if you time the BitBlt func-
tion, you will find the bandwidth compa-
rable to what you find under DOS for the
same resolutions. The catch is BitBlt
transfers pixels from objects called
HBITMAPs, not from memory the applica-
tion owns.

Applications are not allowed to
touch the bits of an HBITMAP directly, they
must use Windows Graphics Device
Interface (GDI) functions, like LineTo,
SetPixel, and Rectangle. GDI provides a
rich set of two-dimensional graphics func-
tions that are perfect for applications like
spreadsheets and word processors, but you
will not find a TextureMapPolygon function
anywhere in the Windows API documen-
tation. For this reason, games need to
render directly to memory, and GDI does
not allow them this luxury with HBITMAPs.

Windows does provide objects called
Device Independent Bitmaps (DIBs),
which applications can access directly, but

the APIs for transferring DIBs to the
screen (StretchDIBits and SetDIBitsToDe-
vice) are typically three to 20 times slower
than BitBlt and therefore not competitive
with DOS blt bandwidth.

WinGBitmaps—a Hybrid
WinG introduces a new kind of object:
the WinGBitmap. WinGBitmaps are both DIBs
and HBITMAPs. Applications get a pointer to
the bits like a DIB, and like an HBITMAP,
WinG will transfer them to the screen
quickly. How quickly? At the 1994 Game
Developer’s Conference, we demonstrated
a Windows version of Doom, WinDoom,
running at about the same speed under
Windows as the DOS version on the
same hardware. Better yet, it only took a
weekend to do the port.

Porting a DOS
Game to WinG
I don’t have space in this article to develop
a DOS game and then port it to Win-
dows and WinG, but I will describe a typ-
ical DOS game’s architecture and discuss
how to move it to WinG. Let’s assume
our game has five major parts:
• Setup
• Get input events
• Run the simulation
• Render into a buffer
• Blt the buffer to the screen.

During Setup, the program allocates
the off-screen buffer, creates the palette,
and initializes the simulator. Next, it gets
any user input and uses that information
to run the simulator for a single time slice.
The results of the simulation are rendered
into a buffer, and the buffer is blted to the
screen. We’re ignoring synchronization,
sound, networking, user interface, and

Does graphics per-

formance set DOS and

Windows a world

apart? Think again.

Because of WinG,

Window‘s graphics

are flying high, giving

performance at or

above their DOS

counterparts.

by Chris Hecker

GAME DEVELOPER • SEPTEMBER 1994 15

whatnot, but you get the idea.
Under Windows, the setup phase

needs to initialize Windows-specific ele-
ments, like the application window, but
most of the setup code stays the same.
One interesting difference is that, unlike
the DOS version where your application
allocates the buffer memory, you must call
WinGCreateBitmap with BITMAPINFO (a struc-
ture describing the size and format of the
WinGBitmap) to allocate the buffer, and
WinG will return the memory pointer.
The application uses this pointer to draw
on the WinGBitmap surface directly.

The application will also need to use
GDI palette APIs to create and realize the
game’s palette. GDI realizes a palette
when it copies the description of the
palette colors into the video hardware.
Because multiple applications can share
the hardware palette, this can get a bit
tricky, but there is plenty of palette sample
code in the WinG development kit to
illuminate matters.

User input is slightly more difficult.
Well-behaved Windows applications
must yield control to the system fairly
often in case the user wants to switch
away to another application. Normal
applications like word processors call the
GetMessage API to process their user input
messages. If there are no messages for the
application, GetMessage doesn’t return until
one comes in.

A game can’t use GetMessage because
even if the player isn’t providing input to

the application, the simulation must still
run. You don’t want the whole game to
stop when the user stops pushing keys or
moving the mouse, so Windows provides
an API called PeekMessage. This API
returns immediately even if there are no
messages so the game can continue the
simulation. The subtleties of PeekMessage
in particular and event-driven architec-
tures in general are beyond the scope of
this article, but I will provide you with an
appropriate reference.

The game simulation code should
work unchanged on Windows. Once the
user input is translated from Windows
messages to the application-specific for-
mat, the simulation should run normally.

Your game’s rendering code should
also work unchanged. The only caveat is
that WinGBitmap scanlines are dword aligned,
so if for some reason you need a 201-wide
bitmap, you’ll need to know the start of
the next scanline is actually 204 bytes
from the current scanline, not 201 bytes.

Once composition is complete, you
blt the buffer to the screen with WinGBitBlt
or WinGStretchBlt. As its name implies,
WinGStretchBlt will stretch or compress the
WinGBitmap as it blts, where WinGBitBlt sim-
ply transfers the WinGBitmap to the screen.

Once you have your game running
on Windows, it’s time to make it run fast.
You’ll also want to take advantage of the
benefits of running in a windowed envi-
ronment, so we’ll talk about some of those
issues as well.

Setup
Our naive port called WinGCreateBitmap
with the description of the WinGBitmap we
wanted. To achieve maximum blt perfor-
mance during the screen update phase,
we’ll ask WinG for a little help during our
optimized setup. Although WinG is fast
under almost any circumstances, there will
always be a particular WinGBitmap format
that is the absolute fastest to blt on the
current display, and the WinGRecommendDIB-
Format API will tell us what that format is
at run time.

The most important difference
between the DIB formats that we’ll get
back from WinGRecommendDIBFormat is the
DIB orientation. There are two DIB ori-
entations: bottom-up and top-down,
illustrated in Figure 1. Both kinds of
DIBs consist of a BITMAPINFO structure and
a pointer to the bits. The BITMAPINFO con-
tains information such as the width,
height, number of bits per pixel, and the
color table of the DIB. For bottom-up
DIBs, the bits pointer points to the bot-
tom-most scanline in the DIB.

Increasing memory addresses means
going up the DIB image, hence the term
bottom-up. This is probably the exact
opposite of the memory bitmaps you’ve
dealt with before and is the opposite of
most video displays (notably mode 13h
VGA, for example). Top-down DIBs are
more familiar: the bits pointer points to
the top-most scanline, and increasing
memory addresses go down the image.
Life gets interesting because WinG might
recommend either DIB format at run-
time, and high-performance games should
be able to deal with both. This isn’t as
hard as it sounds. I’ll go over the details in
the section on rendering.

Once we have the recommended
DIB format, we pass the information to
WinGCreateBitmap and go on to our palette
setup. For optimal performance, a WinG
application should have an “identity
palette mapping.” An identity palette
mapping means the color table in the
WinGBitmap and the palette in the display
hardware match exactly. In this case,
WinG can block-transfer the pixels in the
WinGBitmap to the screen without translat-
ing them. If the palette mapping is not
identity, WinG needs to translate each

T O U R O F W I N G

16 GAME DEVELOPER • SEPTEMBER 1994

Figure 1. DIB Orientations

pBits

Bottom-up DIB Top-down DIB

In
cr

ea
si

ng
 M

em
or

y

pBits

pixel as it is blted, which is slow. We’ll
cover this briefly, and if you still don’t get
it, there is plenty of excruciatingly detailed
documentation and sample code in the
WinG development kit.

Windows runs multiple applications
at the same time. There is only one hard-
ware palette—something has to give. The
compromise is that each application
requests the hardware palette (called the
system palette) by calling RealizePalette.
Windows may or may not let the applica-
tion have the entire system palette
depending on a number of factors, like
whether the application is in the fore-
ground, whether there are other palette
applications around, and so on.

Even if Windows does give the
application the system palette, the system
tries to minimize the palette entries used
by each application by collapsing any
duplicate colors into the first instance of
that color. In addition, each WinGBitmap
has an application-defined color table
associated with it, and the color table
must match the system palette for the

mapping to be identity. If all this sounds
complicated, it is, but once you under-
stand it, you’ll be able to charge out-
landish consulting fees to other game
developers, so it’s worth your time to
learn. Besides, your blts will go from
mediocre to blazing once you get an iden-
tity palette mapping.

WinG can help in your quest for an
identity mapping by spitting out debug-
ging information. You can set two flags in
the win.ini configuration file to direct
WinG to tell you what is going on. The
Debug flag makes WinG tell you if you
have an identity palette mapping, and the
DebugPalette flag makes it tell you how
each color table index in your WinGBitmap
maps to the current system palette if that
mapping is not identity. So, if you can’t
figure out why you don’t have an identity
palette, you can turn on DebugPalette and
see messages like:

WinG: Palette mapping is not identity.

WinG: Color table index 123 maps to

system palette entry 5.

You can take this information and see
exactly why you aren’t getting an identity
mapping.

As soon as you’ve figured out the
intricacies of identity palettes, you’ll need
to make a user interface decision:
SYSPAL_STATIC mode or SYSPAL_NOSTATIC
mode. Windows normally reserves 20 col-
ors in the system palette and does not let
applications overwrite them. This keeps a
single palette application from making all
other applications look horrible—other
applications always have at least those 20
colors, called the static colors, to map to,
even if an application realizes an all-black
palette. As with most things in Windows,
there’s a way around the static colors: Set-
SystemPaletteUse. If you call SetSystem-
PaletteUse with SYSPAL_NOSTATIC, Windows
will let you overwrite 18 of the 20 static
colors, leaving only black at entry 0 and
white at entry 255.

SYSPAL_NOSTATIC applications make
the Windows desktop look gross, while
SYSPAL_STATIC applications only get 236
colors out of a possible 256. You’ll need to

GAME DEVELOPER • SEPTEMBER 1994 17

choose which mode to use as you develop
your game. It is possible to use SYSPAL_NOS-
TATIC when you have a maximized window
(users won’t be able to see the off-colored
desktop anyway) and SYSPAL_STATIC when
you’re windowed (and users can see the
program manager and other applications),
but your game must do the extra work.

Rendering
High-performance games have optimized
rendering algorithms, and most of this
code can be left alone, although your ren-
dering code will need to deal with top-
down and bottom-up DIBs for best per-
formance. The impact this has on most
rendering code is minimal. When you
step from scanline to scanline, you need to
use a signed number. For example, let’s
say this is your rendering loop for a 320
byte wide buffer:

; edi points to destination scanline

mov edi,pBits

loop_top:

; draw some pixels

mov [edi],ThisValue

mov [edi+4],ThatValue

mov [edi+8],TheOtherValue

add edi,320 ; point to ext

scanline

dec ScansLeft ; if we’re not done,

jnz loop_top ; do it again

Although simple, this type of loop is the
core of most scanline renderers. After
changing two lines, this code can handle
both DIB orientations at run time:

mov edi,pBits

becomes:

mov edi,pTopScanline

where pTopScanline is the first scanline
(pBits) on top-down DIBs and the last
scanline (pBits + WidthInBytes * (Height -
1)) on bottom-up DIBs. The second
change is:

add edi, 320

to:

add edi,DeltaScan

where DeltaScan is 320 for top-down
DIBs and -320 for bottom-up DIBs. This
change causes the renderer to always move
down the image, increasing edi for top-
down and decreasing it for bottom-up.

A second issue affecting the renderer
is variable-sized viewports. Because Win-
dows runs at whatever resolution the user
chooses, games should be able to handle
different window sizes. There are two
ways to do this: the game can render at
different resolutions, or the game can use
WinGStretchBlt to stretch a constant-sized
buffer to the variable-sized window. The
former is a rendering issue, the latter
affects the blt/update code as well.

Blting
There are tradeoffs between rendering at
the viewport resolution and calling WinG-
BitBlt to blt the buffer and rendering at a
lower resolution and calling WinGStretch-
Blt to expand the buffer to the viewport
resolution. If your renderer can handle
high-resolution buffers, you’ll get the best
looking results by rendering at the resolu-
tion of the viewport, but you might find
the performance is too slow. If your game
is pixel-bound, like Doom (in other

words, it spends more time rendering a
pixel than WinG spends blting or stretch-
ing that pixel), you may want to take
advantage of the high-performance
stretch code in WinGStretchBlt, render to a
low resolution buffer, and stretch it to fill
the viewport.

When we ported WinDoom, we left
the rendering vs. stretching issue to the
user by providing a menu of choices. You
can set it to render to the current window
size (which really slowed down as the
window got larger), or it could render at a
preset size and stretch to the current win-
dow size. WinGStretchBlt is extremely fast,
so the stretching option usually resulted in
the best frame rate, but it didn’t look as
nice as the full rendered version. Most
DOS games have level-of-detail settings,
so users can choose stretching versus ren-
dering as they like.

Other Issues
It’s been said that the best and worst thing
about Windows is that it runs on an
incredible variety of hardware. To make
the most of this variety, your game will
need to configure itself to the run-time
platform, like WinG does at startup with
the display performance test. Is it faster to
stretch or render? The answer will change
depending on the user’s hardware and
software configuration, so be prepared. Is
it faster to update dirty rectangles or blt
the whole buffer? Again, this can change
from machine to machine. Time it and
you’ll never go wrong.

This has been a whirlwind tour of
WinG game development, but we’ve
touched on the major issues. Once you are
seriously into Windows programming, get
the WinG development kit for yourself
and play with the sample applications to
get first-hand experience, then port your
game to Windows in no time flat. ■

Chris Hecker works for a large software
company in the Pacific Northwest. He can’t
mention the name because then he’ll need all
sorts of disclaimers. It’s just a coincidence that
he can be reached at checker@microsoft.com. or
through Game Developer magazine.

T O U R O F W I N G

18 GAME DEVELOPER • SEPTEMBER 1994

I
s it time you port your own game
to Windows? Then it’s time to
start using WinG. For the satisfac-
tion of porting your own game in
no time flat, consult these

resources. Don’t sit around while
someone does it for you—WinG it!

FOR BEGINNERS:
Programming Windows 3.1 by Charles
Petzold (Microsoft Press, 1992)

FOR EXPERIENCED DEVELOPERS:
The Microsoft Developer’s Network CD-
ROM (Microsoft Developer Network,
(800) 759-5474).

FOR EVERYONE:
Microsoft’s WinG Development Kit is
available from the winmm forum on
CompuServe or on ftp.microsoft.com

W I N G I N G I T

Please use checker@d6.com.

