
Attention:

This material is copyright 1995-1997 Chris Hecker. All rights
reserved.

You have permission to read this article for your own education. You
do not have permission to put it on your website (but you may link
to my main page, below), or to put it in a book, or hand it out to your
class or your company, etc. If you have any questions about using
this article, send me email. If you got this article from a web page
that was not mine, please let me know about it.

Thank you, and I hope you enjoy the article,

Chris Hecker
definition six, incorporated
checker@d6.com
http://www.d6.com/users/checker

PS. The email address at the end of the article is incorrect. Please
use checker@d6.com for any correspondence.

B
y the time you read this arti-
cle, the Electronic Entertain-
ment Expo (E3) will be long
over, but in the time warp of
magazine article submission
deadlines it was just last week-
end in Los Angeles. E3 is the
game industry’s attempt to

break from the huge toaster, car
stereo, and microwave oven event
that is the Consumer Electronics
Show. Whether this breakaway was
successful remains to be seen, but one
thing is certain: the new generation of
video game consoles garnered a lot of
attention and floorspace. Atari,
Sega, 3DO, and Sony battled for
developers’ attention, each hoping to
wow people with its machine’s high-
end features and get the really cool games
developed for its platform—the Jaguar,
the Saturn, the Multiplayer, and the
PlayStation, respectively.

The reason I bring this to your
attention is the one feature advertised
above all others for each machine is—you
guessed it—texture mapping. Each com-
pany claims its system has the most realis-
tic texture mapping, or the fastest texture
mapping, or the least expensive texture
mapping.

I’ll mention one important
caveat before I lay into this generation
of hardware with technical criticism. It’s
completely unclear what relation, if any,
exists between texture mapping quality
and overall game quality (and certainly
sales). Super Mario Bros., for example,
has absolutely no texture mapping, but it
sure is a great game, both from a playabil-
ity and profitability standpoint.

Keeping that in mind, the texture

mapping on these machines sure does
suck.

How do they screw up texture map-
ping? Let me count the ways. First and
most noticeable is that all the texture
mapping hardware in this generation is
affine. Affine texture mapping, as we dis-

cussed in “Perspective Texture Map-
ping Part I: Foundations” (Under
the Hood, April/May 1995),
assumes the equation to map screen

coordinates to texture coordinates is
linear. This results in really nasty texture
warping when the linear equation and the

true equation start to differ by a sub-
stantial amount. The ironic part
about affine texture mapping is these
two equations differ most when the

textures are very close to your view-
point, which makes the problem easy to

spot.
You can clearly see this for

yourself in almost every game pro-
duced for these machines. Check out

the floors in some of the fighting
games or the walls in walkthrough or dri-
ving games. Get real close and prepare for
a stomach-churning texture dance.

Second, and particularly germane
to today’s discussion, some of these
machines only support integer-tex-
ture coordinates, that is, the vertices

of the polygons can only correspond
to integer coordinates in the source

bitmap. This wouldn’t seem so bad until
you realize one of the ways to combat the
affine problems I’ve mentioned is to sub-
divide your polygons until the linear
equation is a closer fit (we’ll cover this
technique in the near future). The subdi-
vision points are not likely to fall on inte-
ger texture coordinates, so this hardware

Perspective Texture
Mapping, Part III:
Endpoints and Mapping

If you think we‘ve

covered everything on

perspective texture

mapping, you‘re

wrong. In Part III of

this ongoing series,

we get a close look at

the math involved in

endpoints and

mapping.

Chris Hecker

B E H I N D T H E S C R E E N

GAME DEVELOPER • AUGUST/SEPTEMBER 1995 17

forces you to snap to the nearest integer,
resulting in jitter that’s plainly visible in
the games.

Finally, a few of the machines only
support integer screen-space polygon ver-
tices. In other words, if your polygon
comes out of your three-dimensional
transform pipeline with noninteger end-
points (as it’s very likely to do) you’ve got
to snap the vertex to an integer pixel loca-
tion, which causes even more jitter. Con-
veniently for the purposes of this article,
this is the exact jitter problem we intro-
duced into our own texture mapper when
we converted from floating-point to inte-
ger rasterization (“Perspective Texture
Mapping, Part II: Rasterization,” Behind
the Screen, June/July 1995). Of course, we
haven’t spent millions of dollars on devel-

oping a piece of hardware and marketing
it, so we can fix our jitter problem pretty
easily.

Jitter Bug
We don’t have the space to do a total
review of the work we covered in my first
two columns on texture mapping. How-
ever, the five-second summary is as fol-
lows. In the first column, we derived the
perspective texture mapping equations,
including the equations for perspective
projection and those for stepping the tex-
ture coordinates across the destination
polygon (these step values are called the
gradients). We also looked at how to cor-
rectly sample with subpixel accuracy.
This last topic caused us to investigate
how to get rid of the cost of this subpixel
accuracy while retaining its advantages,
and in the second column we showed
how to do this using a digital differential

analyzer (DDA). We converted our orig-
inal floating-point rasterizer to an integer
DDA to realize the savings, but we
uncovered a nasty jitter as our polygon
moved and animated.

This jitter was introduced because
our triangle gradients are calculated from
the endpoints of the triangle, and those
endpoints, when restricted to be integers,
change by a relatively large amount from
frame to frame. (The mathematically
inclined among you will notice that the
gradients are calculated from two times
the signed area of the triangle [which is
also the cross product]. When the end-
points are truncated to integers this area
changes, altering our gradients and caus-
ing the jitter.)

What we need is better precision on

the endpoints, but we want to keep the
advantages of using a DDA rasterizer.
Enter fractional endpoints.

Fractional Endpoints
When I say fractional endpoints, the
first thing that comes to mind is fixed-
point math. While we are going to be
using fixed-point numbers to represent
our vertices and to give us the extra pre-
cision we need to avoid the integer jitter,
you’ll see we’re not going to be rasteriz-
ing the edges using the familiar fixed-
point increments. As usual, to pack all
the information we need into this article,

I’m not going to be able to describe the
basics of fixed-point math. For a
description of fixed-point math that’s
easy to understand, I suggest reading
Michael Abrash’s Zen of Graphics Pro-
gramming (Coriolis Group, 1994) or the
PC Game Programmer’s Encyclopedia,
which is a neat freeware programming
book available via ftp on x2ftp.oulu.fi.

We’ll use 28.4 fixed point for our
endpoints. I’m going to use the integer-
dot-fraction notation for fixed-point
numbers, so 28.4 means we have 28 bits of
(usually signed) integer and four bits of
fractional precision.

We’ll use this format for two rea-
sons. First, four fractional bits is enough
to eliminate the jitter. Second, I happen
to know that the Windows NT polygon
rasterizer can be set up to do correct top-
left 28.4 rasterization, and it always
helps to have a proven version against
which to test (although I won’t show it
here, we can write a program that raster-
izes a polygon with our code, then ras-
terizes the polygon with Windows NT’s
rasterizer, so we can check for differ-
ences to test our rasterizer). Once you
see how the math works you’ll be able to
derive a rasterizer for whatever fixed-
point format you like best.

As I hinted before, instead of using a
fixed-point or floating-point incremental
step to move from one scanline to the
next, as our first rasterizer did, this raster-
izer will use an error-term DDA (much
like the Bresenham line-drawing algo-
rithm, covered in most graphics books).
However, unlike most DDA rasterizers
you’ve probably seen, our DDA parame-
ters will be initialized with fixed-point
numbers instead of integers.

We’ll start by defining exactly what
we mean by fractional endpoints. From
here on out, x and y are real numbers,
not integers, and their values are m/F
and n/F, respectively. The numbers m
and n are integers, and F is the scaling

B E H I N D T H E S C R E E N

GAME DEVELOPER • AUGUST/SEPTEMBER 1995 19

Figure 1. Equations 1 Through 3

x
x x
y y

y y x

a
b

a
b

a
b

a b
b

a
b

a
b

a b
b

int ()

()

mod
(

= -
-

Ê

Ë
Á

ˆ

¯
˜ -() +

È

Í
Í
Í

˘

˙
˙
˙

È

Í
Í
Í

˘

˙
˙
˙

= -Í

Î
Í
Í

˙

˚
˙
˙

+ = - +
Í

Î
Í
Í

˙

˚
˙
˙

= - +Í

Î
Í
Í

˙

˚
˙
˙

=
Í

Î
Í
Í

˙

˚
˙
˙

+

1 0

1 0
0 0 1

1
1

1
1

1
2

3))

Figure 2. Equation 4

x
F my mn nm F n

F nint ()= - + - +Í

Î
Í
Í

˙

˚
˙
˙

D D D D
D

0 0 1
4

factor for whatever fixed-point format
you’re using. For 28.4 fixed-point, F =
16, for 16.16, F would be 65,536, and so
on. To convert from the fixed-point val-
ues to real numbers we divide by the
scaling factor. You commonly see the
opposite of this when you multiply a
floating point number by the scaling fac-
tor to get its fixedpoint value. Here are
some useful equations:

We’ll be reusing some of the formulas we
derived in the first two columns. Refer to
Figure 1 for Equations 1 through 3. The
variables a and b are integers in these
equations—remember that the mathe-
matically defined mod operator (used in
Equation 3) probably behaves slightly dif-
ferently than the modulus operator in
your chosen programming language. See
the FloorDivMod function in Listing 1 for
the correct implementation and
“Perspective Texture Mapping, Part II:
Rasterization” for an in-depth discussion.
Equation 1 shows the real formula for a
left edge under our fill convention (right
edges are the same equation minus one).
Let’s rewrite Equation 1 to use fixed
point:

If we do some basic algebra and use the
ceiling-to-floor conversion in Equation 2
(you can move integers into and out of a
ceiling or floor) on this we get the equa-
tion pictured in Figure 2.

Next we’ll introduce the symbol R
(Why R? I don’t know, mostly because
I’m running out of letters in the alpha-
bet!), set it equal to the numerator so
things look pretty, and finally use Equa-
tion 3 (the relationship between a rational
number and its floor and mod) on the
R/F∆n term inside the floor to give us our
initial condition:

x

m
F
n

F

y
n
F

m
Fint =

Ê

Ë

Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜

-
Ê

Ë
Á

ˆ

¯
˜ +

È

Í

Í
Í
Í
Í
Í

˘

˙

˙
˙
˙
˙
˙

D

D
0 0

D D

D D

x x x
m

F
m m

F

y y y
n

F
n n

F

= - = = -

= - = = -

1 0
1 0

1 0
1 0

B E H I N D T H E S C R E E N

20 GAME DEVELOPER • AUGUST/SEPTEMBER 1995

typedef long fixed28_4;
inline fixed28_4 FloatToFixed28_4(float Value) {

return Value * 16;
}
inline float Fixed28_4ToFloat(fixed28_4 Value) {

return Value / 16.0;
}
inline fixed28_4 Fixed28_4Mul(fixed28_4 A, fixed28_4 B) {

// could make this asm to prevent overflow
return (A * B) / 16; // 28.4 * 28.4 = 24.8 / 16 = 28.4

}
inline long Ceil28_4(fixed28_4 Value) {

long ReturnValue;
long Numerator = Value - 1 + 16;
if(Numerator >= 0) {

ReturnValue = Numerator/16;
} else {

// deal with negative numerators correctly
ReturnValue = -((-Numerator)/16);
ReturnValue -= ((-Numerator) % 16) ? 1 : 0;

}
return ReturnValue;

}
struct POINT3D {

fixed28_4 X, Y;
float Z;
float U, V;

};
inline void FloorDivMod(long Numerator, long Denominator, long &Floor,

long &Mod)
{

assert(Denominator > 0); // we assume it’s positive
if(Numerator >= 0) {

// positive case, C is okay
Floor = Numerator / Denominator;
Mod = Numerator % Denominator;

} else {
// Numerator is negative, do the right thing
Floor = -((-Numerator) / Denominator);
Mod = (-Numerator) % Denominator;
if(Mod) {

// there is a remainder
Floor—; Mod = Denominator - Mod;

}
}

}
gradients::gradients(POINT3D const *pVertices)
{

int Counter;
fixed28_4 X1Y0 = Fixed28_4Mul(pVertices[1].X - pVertices[2].X,

pVertices[0].Y - pVertices[2].Y);
fixed28_4 X0Y1 = Fixed28_4Mul(pVertices[0].X - pVertices[2].X,

pVertices[1].Y - pVertices[2].Y);
float OneOverdX = 1.0 / Fixed28_4ToFloat(X1Y0 - X0Y1);
float OneOverdY = -OneOverdX;
for(Counter = 0;Counter < 3;Counter++)
{

float const OneOverZ = 1/pVertices[Counter].Z;
aOneOverZ[Counter] = OneOverZ;
aUOverZ[Counter] = pVertices[Counter].U * OneOverZ;
aVOverZ[Counter] = pVertices[Counter].V * OneOverZ;

}
dOneOverZdX = OneOverdX * (((aOneOverZ[1] - aOneOverZ[2]) *

Fixed28_4ToFloat(pVertices[0].Y - pVertices[2].Y)) -
((aOneOverZ[0] - aOneOverZ[2]) *
Fixed28_4ToFloat(pVertices[1].Y - pVertices[2].Y)));

dOneOverZdY = OneOverdY * (((aOneOverZ[1] - aOneOverZ[2]) *
Fixed28_4ToFloat(pVertices[0].X - pVertices[2].X)) -
((aOneOverZ[0] - aOneOverZ[2]) *

Listing 1. Changes for Fractional Endpoints (Continued on p. 21)

GAME DEVELOPER • AUGUST/SEPTEMBER 1995 21

Notice that we moved the floored R/F∆n
term outside the main floor; we can do
this because a floored term is an integer by
the definition of the floor function, and
you can always move an integer into and
out of a floor.

Equation 5 is our initial DDA con-
dition. If we plug in integer y values and
do the math correctly, the floored R/F∆n
term will be our initial integer x starting
location, and the numerator of the mod
term will be our initial DDA error term.
Before we plug it into this equation, our
y should be prestepped to the first scan-
line according to our fill convention,
which defines the starting integer y as the
ceiling of the fractional y. Alternatively, if
you’re two-dimensionally clipping the
polygon at rasterization time, you’d make
y be the first scanline you want to draw
after clipping.

To calculate our DDA step variables
for x to step to x’, we plug y = y + 1 into
Equation 4 and see that our equation
changes by F∆m/F∆n. We use Equation 3
to convert this ratio into an integer and a
fractional part:

Equations 5 and 6 will step us on the inte-
ger raster grid, but we will step according
to the fractional edge, so we’ll get the extra
precision. As I’ve mentioned before, it’s
important to notice that the mod terms are
always positive, so when our error term
rolls over our DDA will always step by 1
(in contrast with some other DDAs you’ve

probably seen where you step by 1 for
right-going edges and by -1 for left-going
edges). This slightly odd behavior drops
out of the math when you do the flooring
divide and mod correctly, as we discussed
previously.

We’re still doing the same DDA step
as in my last column (the step code is
identical), but the various DDA values are
determined by the real fractional end-

points, not by the truncated integers.
More importantly, the gradients are calcu-
lated with the fractional endpoints, which
avoids the jitter problems that brought up
this fractional mess in the first place.

The results are surprising. Visually,
you can’t tell the difference between our
original floating-point rasterizer and the
new fractional endpoint rasterizer—they
both are completely solid and jitter-free—

x x
F m
F n

ErrorTerm

F m F n
F n

'

mod

()

int int= +
Í

Î
Í
Í

˙

˚
˙
˙

+

+Í

Î

Í
Í
Í

˙

˚

˙
˙
˙

D
D

D D
D

6

R F my mn

nm F n

x
R

F n
R F n

F n

R
F n

R F n
F n

= - +
- +

=
Í

Î
Í
Í

˙

˚
˙
˙

+
Í

Î
Í
Í

˙

˚
˙
˙

=
Í

Î
Í
Í

˙

˚
˙
˙

+
Í

Î
Í
Í

˙

˚
˙
˙

()

D D
D D

D
D

D

D
D

D

0

0 1

5

int
mod

mod

Listing 1. Fractional Endpoints (Continued from p. 20)

Fixed28_4ToFloat(pVertices[1].X - pVertices[2].X)));
dUOverZdX = OneOverdX * (((aUOverZ[1] - aUOverZ[2]) *

Fixed28_4ToFloat(pVertices[0].Y - pVertices[2].Y)) -
((aUOverZ[0] - aUOverZ[2]) *
Fixed28_4ToFloat(pVertices[1].Y - pVertices[2].Y)));

dUOverZdY = OneOverdY * (((aUOverZ[1] - aUOverZ[2]) *
Fixed28_4ToFloat(pVertices[0].X - pVertices[2].X)) -
((aUOverZ[0] - aUOverZ[2]) *
Fixed28_4ToFloat(pVertices[1].X - pVertices[2].X)));

dVOverZdX = OneOverdX * (((aVOverZ[1] - aVOverZ[2]) *
Fixed28_4ToFloat(pVertices[0].Y - pVertices[2].Y)) -
((aVOverZ[0] - aVOverZ[2]) *
Fixed28_4ToFloat(pVertices[1].Y - pVertices[2].Y)));

dVOverZdY = OneOverdY * (((aVOverZ[1] - aVOverZ[2]) *
Fixed28_4ToFloat(pVertices[0].X - pVertices[2].X)) -
((aVOverZ[0] - aVOverZ[2]) *
Fixed28_4ToFloat(pVertices[1].X - pVertices[2].X)));

}
edge::edge(gradients const &Gradients, POINT3D const *pVertices,

int Top, int Bottom)
{

Y = Ceil28_4(pVertices[Top].Y);
int YEnd = Ceil28_4(pVertices[Bottom].Y);
Height = YEnd - Y;
if(Height)
{

long dN = pVertices[Bottom].Y - pVertices[Top].Y;
long dM = pVertices[Bottom].X - pVertices[Top].X;
long InitialNumerator = dM*16*Y - dM*pVertices[Top].Y +

dN*pVertices[Top].X - 1 + dN*16;
FloorDivMod(InitialNumerator,dN*16,X,ErrorTerm);
FloorDivMod(dM*16,dN*16,XStep,Numerator);
Denominator = dN*16;
float YPrestep = Fixed28_4ToFloat(Y*16 - pVertices[Top].Y);
float XPrestep = Fixed28_4ToFloat(X*16 - pVertices[Top].X);
OneOverZ = Gradients.aOneOverZ[Top]

+ YPrestep * Gradients.dOneOverZdY
+ XPrestep * Gradients.dOneOverZdX;

OneOverZStep = XStep * Gradients.dOneOverZdX
+ Gradients.dOneOverZdY;

OneOverZStepExtra = Gradients.dOneOverZdX;
UOverZ = Gradients.aUOverZ[Top]

+ YPrestep * Gradients.dUOverZdY
+ XPrestep * Gradients.dUOverZdX;

UOverZStep = XStep * Gradients.dUOverZdX
+ Gradients.dUOverZdY;

UOverZStepExtra = Gradients.dUOverZdX;
VOverZ = Gradients.aVOverZ[Top]

+ YPrestep * Gradients.dVOverZdY
+ XPrestep * Gradients.dVOverZdX;

VOverZStep = XStep * Gradients.dVOverZdX
+ Gradients.dVOverZdY;

VOverZStepExtra = Gradients.dVOverZdX;
}

}

B E H I N D T H E S C R E E N

22 GAME DEVELOPER • AUGUST/SEPTEMBER 1995

and we get all the benefits of doing error-
term integer DDAs.

Listing 1 shows the changes to our
texture mapper to use fractional end-
points. One thing to watch for is overflow
in these equations, particularly in the
numerator of Equation 4. If your polygons
get really big, and your scaling factor is
large, you can overflow beyond 32 bits.
Most architectures make it possible to
keep a 64-bit numerator around for the
divide, so you can usually handle this if the
need arises.

Off The Map
Let me just come out and say it: there’s a
bug in the code from my first column on
perspective texture mapping. No, it’s not a
bug in any of the rasterization math or
implementation we’ve been poring over
for the last two issues, and it’s subtle
enough that you’d have to know what you
were looking for and look pretty hard to
find it. In fact, Michael Abrash and I were
talking about a related issue when we real-
ized there actually was a bug in the code
and math. We even tossed around the
idea of having a contest to spot the bug,
but I decided against it because I assumed
it was so subtle nobody would figure it
out. Of course, within the next day or so
Walt Donovan (walt@rendition.com)
from Rendition Inc. sent me e-mail

describing the very
problem!

The bug is in
the only part of the
code where I didn’t
rigidly define the
math before I start-
ed out: the real-to-
integer source-tex-
ture coordinate
mapping.

As we’ve seen,
we have rock-solid
m a t h e m a t i c a l
descriptions of the
rasterization, the
subpixel stepping,
the perspective pro-
jection, and the
gradient calcula-
tions. But when it
comes time in the

code to take our real texture coordinates
for the current pixel center and map
them into integer-source-texture coordi-
nates, we simply truncate with no expla-
nation of whether this is the correct
thing to do or not. It’s not, and we’re
going to figure out why. Here’s the sus-
pect code from our original DrawScanline
function (the variables on the right are
floating point numbers):

int U = UOverZ * Z;

int V = VOverZ * Z;

To understand why this code is
wrong, we need to understand how the
mapping from the source to the destina-
tion (or vice versa) works, and to under-
stand this, we need to understand the
lowliest element in the graphics pipeline,
the pixel. As we hinted in previous issues,
a pixel isn’t a single point as we’re used to
thinking, it’s really a box; a small box, but
a box nonetheless. Like every other box
(with sides of nonzero length), this one
covers an area, and we need to take that
area into account when we texture map
our polygon.

Figure 3 shows one complete pixel
and portions of a couple of its neighbors.
We’ll call N our integer pixel coordinate,
and you can see the edges, or walls, of the
middle pixel are each a half-pixel away

from the center. This geometry gives our
pixel a total area of one, as you’d expect.
The other pixel centers are exactly one
unit away on either side.

As we rasterize our polygon on the
destination grid, we’re very careful to only
light destination pixels when they’re “in,”
according to our precisely defined fill con-
vention, and we’re also very careful to only
generate source texture coordinates (using
the truncation code for the time being)
when we’re exactly on a destination pixel
center. We’re basically projecting the des-
tination pixel center back into the source
to figure out the source pixel color with
which to light the destination pixel. The
UOverZ * Z expression generates this real
source texture coordinate, and our “map-
ping rule,” such as it is, converts this real
number into an integer source coordinate
we can use to look up the texture pixel
(sometimes called a texel) value.

Figure 4, which shows the source
texture and its position on the destination,
gives us a way of visualizing the problem.
You can also see each of the source texel
boundries drawn in the destination for the
purposes of this illustration. If we were to
rasterize this destination polygon to tex-
ture map our source, we’d generate source
coordinates for each of the destination
pixel centers. As you can see (with the
help of the arrow showing one of the des-
tination pixel centers mapping back into
the source) those pixel centers rarely, if
ever, map to the source pixel centers.

Let’s look at how our current trun-
cation mapping rule affects various source
coordinates by viewing the pixels in Fig-
ure 3 as the source texels. If our perspec-
tive projection for a given mapping takes
a destination pixel center and maps it to
the real point denoted by the A in Figure
3, our truncation rule maps this to pixel
N (A’s value is greater than N, but less
than N + 1, so truncation maps it to N),
which looks about right. In general, we’d
like our mapping rule to take the real
source coordinates and map them to the
nearest integer pixel center, which means
any points that fall within the box for a
given source pixel get mapped to that
pixel’s integer coordinate.

Next let’s say our projection takes our
destination pixel center to B in Figure 3.

Figure 3. A Pixel

N-1 N

B

N+1

N-.5 N+.5

C

D A

GAME DEVELOPER • AUGUST/SEPTEMBER 1995 23

Our truncation generates N - 1 for our
source coordinate, when N is clearly the
right answer! Oops.

Now that you see the bug, let me tell
you how we figured out it was there in the
first place. We were talking about various
texture mapping one day when Michael
asked how I would implement a blt (a
block transfer, or pixel copy) with my tex-
ture mapper. In other words, how would I
allocate the source-texture coordinates and
the destination-screen coordinates so that
the source-to-destination mapping was
one to one? It seems logical to be able to
do this, not so much because you’ll use the
texture code when you simply want to blt,
but because if the math is completely right
you should be able to get an exact 1:1
mapping just like all the other arbitrary
mappings you can get with perspective
projections.

I thought about this problem for a
second, and answered that I’d allocate the
corner texture coordinates and the desti-
nation coordinates at the exact same coor-
dinates on the screen, (-0.5,-0.5) and
(TextureWidth-0.5,TextureHeight-0.5).
(Our code only handles triangles so I’d
obviously need to call it twice to blt the
whole source, but the top-left and bot-
tom-right corners are all I needed to
describe the destination rectangle.) As
soon as I said this I realized I hadn’t
bothered to define the mapping rule from
real source coordinates to integer source
coordinates.

Figure 5 helps illustrate why I chose
the coordinates I did. I can’t stress enough
in this discussion that to get the correct
mappings we need to view pixels as areas,
not just as points. With this in mind, the
coordinates I gave Michael are the coordi-
nates of the inifinitely thin edge that com-
pletely surrounds our source texture
bitmap, as you can see in Figure 5. The
point (-0.5,-0.5) is the upper left-hand
corner of the texture (the upper left-hand
pixel center is at [0,0]), and (9.5,9.5) is the
lower right-hand corner—the edges total-
ly enclose the texture pixels. If I had cho-

sen integer source coordinates for the cor-
ners we’d be cutting the edge pixel areas in
half, which you can see if you take Figure
5 and draw an imaginary edge through the
pixel center.

Similarly, I chose the corresponding
screen coordinates for the destination. I
wanted the destination pixel centers to
map exactly to the source pixel centers, so
it was necessary to completely enclose the
destination pixels in the same manner as
the source pixels.

I realized I needed to define a map-
ping that took a real texture coordinate
and mapped it to the closest integer pixel
center. This is basically a rounding opera-
tion, and the function for rounding is:

Equation 7 is the familiar rounding rule
where you add a half and floor the result. I
looked at what effect this rule would have
on the texture mapper and it fixes the
problem with B in Figure 3, that’s for sure.
However, implicit in any rounding rule is a
tie-breaking rule that kicks in when the
value to be rounded is exactly halfway
between two integers, like C and D in
Figure 3. Equation 7 will map C to N + 1
and D to N, so it’s pretty clear that this is a

C Cint ()= +

Í

Î
Í
Í

˙

˚
˙
˙

1
2

7

Figure 5. Source Texture

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

Figure 4. Mapping

Destination

Source

top-left rounding rule, meaning if the pixel
center falls on the top or left edge of the
pixel it is considered “in,” and if it falls on
the bottom or right edge it is considered
part of the neighboring pixel. This is obvi-
ously very similar to our fill convention.

At first glance, a top-left rounding
rule seems to work well with our top-left
fill convention. It looks like the only way
for our mapping rule to generate a pixel
that’s out of bounds is for the right or bot-
tom edge of the texture to fall directly on a
pixel center in the destination (think about
shifting our blt destination coordinates
down and to the right by a half pixel so
they’re on integers in the destination), but
if the right or bottom edge of the texture
corresponds to a right or bottom edge of
the destination polygon we don’t draw
those pixel centers anyway because of our
fill convention. This beautiful harmony is
broken when you visualize rotating the
destination polygon by 180 degrees so that
its edges still correspond with integer des-
tination pixel centers, but the left edge of
the polygon corresponds to the right edge

of the texture. Now, if we apply our
rounding mapping rule we’ll start with the
right edge of the texture (TextureWidth -
0.5, or 9.5 in Figure 3), add a half, and
floor, resulting in a texture coordinate off
the edge of our texture! Are we back
where we started?

Same Time, Same Channel
The answer to that question is no, but to
find out how we’re going to solve the
problem you’ll have to tune in next time
because I’m out of space. I will give you a
hint, however. Equation 7 is just one
rounding rule. Here’s another:

Equation 8 works out to be a bottom-
right rounding rule, which would have
avoided the problem mentioned at the end
of the last paragraph, but would result in a
similar problem with our original orienta-
tion! Think about what criteria we have
for choosing between the two rounding

rules and join me next issue.
By the way, our texture mapper is

doing a form of resampling called point
sampling. We map the destination pixel
centers into the source and just take what-
ever texel in which we land. There are
other forms of resampling where you take
the corners of the destination pixel and
map them back into the source to form a
quadrilateral, and then filter the resulting
area into a single pixel color. Digital Image
Warping (IEEE Computer Society, 1990)
by George Wolberg covers a bunch of
these resampling techniques.

Once again I’d like to thank Kirk
Olynyk. He’s the reason I know the Win-
dows NT 28.4 rasterizer is correct—he
did the original math. ■

Chris Hecker thinks that regardless of
the outcome of the video game console wars,
it’s unlikely anyone will beat Sega’s “sphinc-
ter” advertisement for pure comedy value.
Discussion of various body parts and their
relationship to video games is available at
checker@bix.com.

C Cint ()= -

È

Í
Í
Í

˘

˙
˙
˙

1
2

8

B E H I N D T H E S C R E E N

24 GAME DEVELOPER • AUGUST/SEPTEMBER 1995

Please use checker@d6.com.

